Tinwisle Corporation

A 'Standards' Foundation for Interoperability

Richard A. Martin
Convener ISO TC 184/SC 5/WG 1

A 'Standards' Foundation for Interoperability

- Backdrop
- Dialog Terms
- Actors
- Past Performances
- On with the Show

I DEAS Gap Analysis

- EC FP6 project (deliverable D3.4, .5, .6)
 - Interoperability <u>Development for</u>
 Enterprise <u>Application and Software</u>
- Gap "missing pieces in research, technology and standardization to achieve a particular goal"
- 36 Gap categories in 3 domains Enterprise Model, Architecture & Platform, Ontologies

I DEAS Road map (Fig 13)

Backdrop
Dialog
Actors
Performance

Year 5 Year 10

Year 2

- Interoperability problem is more complex because it requires agreement on certain common principles and features before truly interoperable solutions can emerge.
- Solutions must...have the trust and acceptance of the industrial and software communities.
- Requires a mechanism to convene the right decision makers to produce the necessary agreement.

The supply chain effect

- Backdrop
 Dialog
 Actors
 Performances
 The Show
- High costs of interoperability particularly impact small and medium sized suppliers
- They often have to maintain redundant and costly software packages in order to communicate with their large EOM customers.
- Large manufacturing companies have pushed costs onto SME's by requiring "standardization" around their preferred systems.

Source: Exploiting E-Manufacturing: Interoperability of Software Systems Used by U.S. Manufactures, NACFAM, Feb. 2001

Systems and Components

I solated

- Proprietary [unique] implementations
- Require human mediation to interact

Unified

- Direct component connections
- Same conceptual representations
- Same decomposition level distinctions
- Emergent properties indistinguishable
- Operates without human mediation

Systems and components

- Integrated
 - Indirect connections using transformations
 - A-priori knowledge of communication protocols
 - Dependent upon specific interfaces
 - Many distinct elements working together
 - Different conceptual representations
 - Emergent properties distinguished
 - Require human intervention to arrange syntax and semantics
 - Local focus (within enterprise)

Systems and components

- Interoperable
 - Dynamic configuration of interaction
 - Minimal human intervention required for semantics
 - Automated agents interact & work on behalf of each other
 - Emergent properties result from interaction
 - Global locus (beyond an enterprise)
 - Multi-dimensional scope

Interoperable defined

 The ability of different types of computers, networks, operating systems, and applications to work together effectively, without prior communication, in order to exchange information in a useful and meaningful manner. There are three aspects of interoperability: semantic, structural and syntactical.

library.csun.edu/mwoodley/dublincoreglossary.html

Multi-dimensional ODP

Viewpoint Interoperability Viewpoint type Organizational **Enterprise Enterprise** Component and Computational Computational service Toformation Information Information Model Transparency Engineering Engineering Mechanism **Technology Technology** Infrastructure

WG1 Interoperability

- A process, not an end
- Improvement always possible
- Levels of granularity, semantics, capability, and transaction load
- Successful interoperation
 - elicits desired behavior
 - within parameters deemed important
 - by humans operating the enterprise
- Choreography of interoperability act

The vocabulary problem

- SC5 Vocabulary Study 2004 report
- 38 terms with multiple definitions in 7 Standards of SC5
- 51 Keywords detected in I SO 15745-1
 - 11 defined in section 3 with 5 of those defined in other SC5 standards
 - 9 normative references as additional definition sources
- Defining 'Resource'
 - 15745 series & others include consumables
 - 15704 & others do not include consumables

Resource – term usage

- Resource word use in 12 SC5 standards
 - 730 usage instances
 - 48 two word clusters used at least 5 times
 - 15 qualified
 - 15 as qualifier
 - 18 by proximate association only
- 12 other words analyzed
 - material, class, process, capability, object, model, segment, control, device, enterprise, production, profile

Who's standards

Backdrop
Dialog
Actors
Performances
The Show

CEN TC310/WG1

Industrial Data - SC4

- ISO 10303 STEP (<u>Standard for the exchange of product model data</u>)
 - EXPRESS language and bindings
 - Conformance and testing
 - Common resources
 - Industry specific application protocols
- Over 100 documents with more coming

STEP success*

- Potential \$928 million (2001\$) savings per year by reducing interoperability problems in the automotive, aerospace, and shipbuilding industries in US
- ~ 17% (\$156 million) of potential benefits quantified within scope of study are being realized
- Expect 75% benefit by 2010

(* 2002 Gallaher study results)

Why STEP succeeds

- Avoidance cost savings accounted for approximately half of the potential benefits of STEP
- 80% of avoidance costs were labor costs associated with the use and support of redundant CAx systems
- Mitigation costs resulting from file transfer and data reentry accounted for the balance of benefits

Process description

- ISO 18629
 - TC184 SC4/SC5 collaboration in JWG8
- PSL (Process specification language)
- Targets process information exchange
- Process information representation
- Process and model independence
- Lexicon, ontology, and grammar
- Different approach than ISO 10303
- 8 documents in various approval stages

Application integration

- I SO 15745 Open systems application integration framework
- Application integration framework
 - Elements and rules for integration requirements using integration models
 - Application interoperability profiles as interface specifications
- UML based integration models
- XML schemas for profile templates

Profiles for integration

Backdrop
Dialog
Actors
Performances

Source: ISO 15745-1 Figure 2. Profile development using ISO 15745

Software capability

Backdrop Dialog Actors

Performances

ISO 16100 – Manufacturing software The Show capability profiling for interoperability

- Characterization of software interface requirements
- Software unit capability elements and rules
- I DEFO, UML models and XML profile schemas
- Manufacturing software units shall interoperate with one another, in support of a manufacturing activity, when the services requested by the former can be provided by the latter, using the same operating environment.

Capability classes

- Manufacturing Capability classes
 - Domain, Application, Information,
 Process, Resources, Activity, Function,
 Software Unit
- Software Capability classes
 - Computing system, Environment,
 Architecture, Design Pattern, Datatype,
 Interface/Protocol
- Role Capability class

Basic concepts & rules

- ISO 14258 Concepts and rules for enterprise models
 - I dentifies basic notions of: Life-cycle, recursion, and iteration
 - I dentifies concepts for structure and behavior representation using views
 - Places focus of standards for interoperability on inter-process communication.

Generalizing standards

- ISO 15704 Requirements for enterprise-reference architectures and methodologies
- Merging of previous work PERA, GRAI GIM, CIMOSA, and GERAM
- Presents principles for enterprise architecture
- Expands I SO 14258 concepts and adds notions of life history and genericity.

ISO 15704 review

- Amending to add new views for user specific concerns
 - Economic view and Decision view
- Systematic review to begin in 2005
 - harmonization with other WG1 efforts
 - expansion of some topics
- General Enterprise Reference Architecture and Methodology (GERAM) update

Scope of GERAM

Backdrop
Dialog
Actors
Performances

The Show

A boundary standard

- ISO 62264 Enterprise-control system integration
 - Object models for interfaces between enterprise business systems and manufacturing control systems

ISO/FDIS 19439

Backdrop
Dialog
Actors
Performances

The Show

CIM Systems Integration:

Framework for

model phase

enterprise

Enterprise Modelling

ISO/DIS 19440

- Constructs for enterprise modelling
 - common semantics enable model unification
 - usable across phases of model development
 - support process-oriented approach
- Templates for specialization and organization into structures for a specific purpose

On with the show

- WG1 participant presentations Bernus, Chen, Kosanke, Martin, and Shorter
- Get involved in standards development
 - target research toward identified gaps
 - document practice in standards terms
 - serve as working group participant
- http://forums.nema.org/~iso_tc184_sc5
- http://www.tc184-sc4.org
- IEC, IEEE, OMG, CEN, etc.