Tinwisle Corporation

Industrial automation process and process model interoperability: an ISO viewpoint

Richard A. Martin
Convener ISO TC 184/SC 5/WG 1

Industrial automation process and process model interoperability: an ISO viewpoint

- Context of interoperation
- Integration standards
- Architecture standards
- Interoperability standards
- Future Efforts

Who's standards

Context

Integrate Architect Interop. Future

CEN TC310/WG1

- Interoperability problem is more complex because it requires agreement on certain common principles and features before truly interoperable solutions can emerge.
- Solutions must...have the trust and acceptance of the industrial and software communities.
- Requires a mechanism to convene the right decision makers to produce the necessary agreement.

The supply chain effect

Context
Integrate
Architect
Interop.
Future

- High costs of interoperability particularly impact small and medium sized suppliers
- They often have to maintain redundant and costly software packages in order to communicate with their large EOM customers.
- Large manufacturing companies have pushed costs onto SME's by requiring "standardization" around their preferred systems.

Source: Exploiting E-Manufacturing: Interoperability of Software Systems Used by U.S. Manufactures, NACFAM, Feb. 2001

Industrial Data - SC4

Context
Integrate
Architect
Interop.
Future

- I SO 10303 STEP (<u>Standard for</u> the <u>exchange of product model data</u>)
 - EXPRESS language and bindings
 - Conformance and testing
 - Common resources
 - Industry specific application protocols
- Over 100 documents with more coming including AP233 for system engineering information

- Potential \$928 million (2001\$) savings per year by reducing interoperability problems in the automotive, aerospace, and shipbuilding industries in US
- ~ 17% (\$156 million) of potential benefits quantified within scope of study are being realized
- Expect 75% benefit by 2010

(* 2002 Gallaher study results)

- Avoidance cost savings accounted for approximately half of the potential benefits of STEP
- 80% of avoidance costs were labor costs associated with the use and support of redundant CAx systems
- Mitigation costs resulting from file transfer and data reentry accounted for the balance of benefits

From data to process

- The STEP domain is primarily <u>data</u> about a product's physical or logical structure
- Whereas SC4 has a data orientation, SC5 has a process orientation – how is the product created?
- SC5 focus is on process interoperability
 - Exchange of process specifications
 - Characterization of process elements
 - Integration of process features

Application integration

Context
Integrate
Architect
Interop.
Future

ISO 15745 – Industrial Automation system and integration - Open systems application integration framework

- Framework identifies:
 - Elements and rules for integration requirements using integration models
 - Application interoperability profiles as interface specifications
- UML based integration models
- XML schemas for profile templates

CANopen DeviceManager

Integrate
Architect
Interop.

Software capability

- Context
 Integrate
 Architect
 Interop.
 Future
- ISO 16100 Manufacturing software capability profiling for interoperability
- Characterization of software interface requirements
- Software unit capability elements & rules
- I DEFO process descriptions, UML models and XML profile schemas
- "Manufacturing software units shall interoperate with one another, in support of a manufacturing activity, when the services requested by the former can be provided by the latter, using the same operating environment."

Capability classes

- Manufacturing Capability classes
 - Domain, Application, Information,
 Process, Resources, Activity, Function,
 Software Unit
- Software Capability classes
 - Computing system, Environment,
 Architecture, Design Pattern, Datatype,
 Interface/Protocol
- Role Capability class

A boundary standard

Context
Integrate
Architect
Interop.
Future

ISO 62264 Enterprise-control system integration

 Object models for interfaces between enterprise business systems and manufacturing control systems

Product definition model

Integrate
Architect
Interop.
Future

Class model attributes

Context
Integrate
Architect
Interop.
Future

Table 51 – Attributes of manufacturing bill

Attribute name	Description	Example
ID	A unique identification of a manufacturing bill.	10000827
Description	Contains additional information of the manufacturing bill.	"All materials required in the manufacturing process for a single widget."
Material class	Identifies the associated material class or set of material classes required for production.	{Polymer sheet stock 1001A, rivets}
	Only the material class or the material property is usually defined.	
Material definition	Identifies the associated material definition or set of material definitions required for production.	{Sheet stock 1443a , rivet-10002}
Quantity	Specifies the amount of resources required for production.	{1.0, 26}
Quantity unit of measure	The unit of measure of the associated quantity, if applicable.	{Sheets/piece, number/piece}

Notice in the examples that there is an implied ordering of the set members. The standard makes no provision for enforcement of correspondence for this ordering between attributes.

MES & ERP integration

- IS 62264 is better known as ISA95
- Selected by SAP and others as basis for MES to ERP information integration
- But, Part 3: Models of manufacturing operations, is slower to emerge
- Diversity in implementation results in incompatibility among vendor solutions
- A middle-ware market will evolve

Operation levels

Integrate
Architect
Interop.
Future

Basic concepts & rules

- ISO 14258:1998 Industrial automation systems Concepts and rules for enterprise models
- I dentifies basic concepts for: lifecycle, recursion, and iteration
- I dentifies concepts for structure and behavior representation using views
- Places focus of standards for interoperability on inter-process communication.

Generalizing standards

- ISO 15704:2000 Requirements for enterprise-reference architectures and methodologies
- Merging of previous work PERA, LEM, GRAL GLM, CLMOSA, and GERAM
- Presents principles for enterprise architecture
- Extends I SO 14258 with concepts for life history and genericity.

Scope of GERAM

Context Integrate Architect Interop.

GERA framework

Context Integrate Architect Interop.

Future

Source: I SO 15704:2000 Annex A and Figure 10, The GERA modelling Framework of GERAM [GERAM V1.6.3 http://www.cit.gu.edu.au/~bernus](used with permission)

Unified model framework

- ISO 19439 Enterprise integration: Framework for enterprise modelling
- Based upon CEN ENV 40003:1990
- Objective is to further enable model based execution using enactable models
- Aligned with IS 15704 (a GERA model)
- Articulates 3 dimensions of enterprise modeling as a framework:

Phase, View, and Genericity

Model phase -

Context
Integrate
Architect
Interop.
Future

the purposive ordinant dimension ordered by coordinates corresponding to the phases of the enterprise model life-cycle.

Enterprise model phase:

- Domain identification
- Concept definition
- Requirements definition
- **Design** specification
- Implementation description
- domain Operation
- **Decommission** definition

I dentify

Elaborate

Use

Dispose

Emphasize model development process for process oriented modeling.

Many possible coordinates

Context
Integrate
Architect
Interop.

Future

15288 Stage 19439 Phase C41 SR Guidance

Concept

4

Domain

Concept

Requirement

Design

→ Scope

→ Focus

← Characterize

→ Determine

Production

Development

Utilization

Support

},

Operation

→ I mplementation

Retirement → **Decommission**

Early phases

Domain identification

- Business objectives, functions, capabilities

Concept definition

- Enablers of objectives & operations
- Means for achievement of functions & capabilities

Requirements definition

 Functional, behavioral, informational, and capability for service, manufacturing, management and control

Design specification

 Processes with all components necessary to satisfy requirements

Post-design phases

Implementation description

All information needed for all tasks of operational system

Domain operation

 Operational usage of model released from implementation

Decommission definition

 Tasks and resources for retraining, redesign, recycling, preservation, transfer, disbanding, disassembly, disposal

Model View -

an unordered ordinant dimension with pre-defined coordinates that partition facts in the unified model relevant to particular interests and context.

- •A prescriptive partition of model content with distinct aspects considered sufficient for most discrete manufacturing
- View content varies with life-cycle model phase
- Function, Information, Resource, and Organization views

Context

Integrate Architect Interop.

Function view of 19439

Function

- Enables representation and modification of the processes of the enterprise, their functionalities, behaviors, inputs and outputs
- Emphasis on system behavior, mutual dependencies, and influence of elements during function execution
- Includes decisional, transformational and support activities
- I dentifies all entities (material, information, resources and control) required for function execution

Other views of 19439

Information

 The material and information related objects used and produced in the course of operations

Resource

 Capabilities of people and technological component assets

Organization

- Authority and responsibility during operations
- Expresses decision support structure

Model Genercity -

Context
Integrate
Architect
Interop.
Future

an ordered ordinant dimension that reflects 19439 as a "standard" framework.

Enterprise genericity level:

- Generic
- reusable modeling language constructs

Partial

 prototype models of industry segment or industrial activity Reference catalog

Particular - models of a particular enterprise domain

Graphic 19439 dimensions

Context Integrate Architect

Interop. Future

CIM Systems Integration:

Framework for

model phase

enterprise

Enterprise Modelling

genericity

Reference Catalog

not defined at domain operation phase

Conformance to 19439

- Shall have function and information view
- Shall be able to derive resource and organization view
- Shall provide distinct model phases
- Shall provide for derivation of partial and particular model from generic constructs
- Shall propagate model changes to all views

Modelling constructs

- ISO/DIS 19440 Enterprise integration Constructs for enterprise modelling
- Based upon CEN ENV 12204:1996
- Aligned with 15704 (an EML artifact)
- Articulates modeling constructs for manufacturing automation
- Elaborates the CIMOSA Baseline example of 19439 with constructs

ISO/DIS 19440 (cont.)

Context
Integrate
Architect
Interop.
Future

- Constructs for enterprise modelling
 - common semantics enable model unification
 - usable across phases of model development
 - support process-oriented approach
- Arrangement and specialization using templates into structures for a specific purpose
- No mapping between functional operations and capabilities
- No explicit versioning mechanism

Construct template

- Common format
 - Header
 - Type label
 - I dentifier unique to model
 - Name
 - Authority for design of construct
 - Body
 - Descriptives in textual form
 - Relationships specified by reference

Construct descriptives

- Predefined for each construct
- User-defined by extension
- May be qualified (e.g. mandatory or optional)
- Possibly XML schemas or EXPRESS notation
- Attributes
 - Name (meaningful in domain)
 - Data type (simple or complex)
- Complementary Concepts

Complementary concepts

are not fully developed as constructs but have particular significance and semantics for the purpose of enterprise modeling

- Behavior rule
- Constraint
- Declarative rule

- Functional operation
- Integrity rule
- Objective
- Performance indicator

Construct relationships

- Model the dynamics between run-time instances
- Types of relationship
 - Operational authority and responsibility
 - Membership in specialization
 - Part of an aggregation
 - Consist of an aggregation
 - Other associations
- Possibly reflexive

Construct and roles

- Human organizational role captures assigned responsibilities and required capabilities (skills)
- Human operational role captures the operational capabilities of person assigned to a task
- Machine operational role captures the operating capabilities of machine assigned to a task
- Machine product role captured by attributes that describe input and output of activities to change state.

Constructs of 19440

				•	
1 1		\sim	1		n
1)	10		1	ı	
			u	•	

Business Process

Enterprise Activity

Event

Resource

Functional Entity

Capability

Person Profile

Enterprise Object

Object View

Product

Order

Operational Role

Organizational Unit

Organizational Role

Decision Centre

Construct across phases

Context Integrate Architect Interop. Future

(Enterprise Object) Construct label EO

I dentifier <model-unique string>

name of the Enterprise Object instance Name

Design Authority[<identifier> "/" <name>] of Organizational Role or Organizational Unit with authority to design or maintain

this particular instance

Body A1 Descriptives relevant for all enterprise model phases

short textual description Description

Nature PHYSICAL | INFORMATION

[cproperty_name>property_value]* - elements representing Attributes

properties and their values for the entity represented by

the Enterprise Object instance

[<constraint>]* imposed on selected named Attributes of the Constraints

Enterprise Object instance

A2 Descriptives relevant for different enterprise model phases

A2.1 applicable at concept definition and later phases

Not applicable

A2.2 applicable at requirements definition and later phases

Integrity Rules [<integrity rule>]* applicable to ATTRIBUTES of the Enterprise Object instance in the requirements definition

phase

Life-cycle expression

Process behaviour

- "shall be described in its behavioural rule set attribute by a set of behavioural rules, which control the sequence of constituent Business Processes and Enterprise Activities."
 - well-structured is completely defined
 - semi-structured is known at run-time
 - ill-structured is non-deterministic

Behaviour rules

Context
Integrate
Architect
Interop.
Future

- Shall enable
 - the capturing of all the conditions that control the sequencing and the dynamic behaviour of Business Processes
 - their presentation in both human and machine understandable form
- Apply only to Business Processes

(internal behaviour of an Enterprise Activity, the sequencing of its set of *functional operations*, is considered to be an implementation issue)

Formal syntax in BNF

```
<behavioural rule set> ::=
  <behavioural rule set> | <behavioural rule >
     <behavioural rule set> ;
<behavioural rule> ::=
  WHEN" "<situation>" "DO" "<action> ";" ;/* a
     behavioural rule is terminated with a
  semicolon */
<situation> ::=
  <condition> | <and_condition_set>;
<and_condition_set> ::= /* and-rendezvous */
  <condition> | <condition>" "AND"
  "<and_condition_set>;
```

Conformance to 19440

- Shall either use the constructs as defined or be able to map to the constructs
- Can claim qualified compliance by using a subset of constructs or mapping to a subset of constructs
- Be a valid construction of a compliant modeling language
- Shall identify construction and model execution testing levels

Process description

- ISO 18629 Industrial Automation system and integration Process specification language
 - TC184 SC4/SC5 collaboration in JWG8
- Target is process information exchange
- Process information representation
- Process and model independence
- Lexicon, ontology, and grammar form PSL
- Different approach than ISO 10303
- 8 documents in various approval stages

A very 'formal' process


```
(forall (?occ)
(iff (occurrence_of ?occ make_harness_wire)
    (exists (?occ1 ?occ2 ?occ3)
      (and (occurrence_of ?occ1 extrude)
           (occurrence_of ?occ2 twist)
           (occurrence_of ?occ3 jacket)
           (min_precedes ?occ1 ?occ2
                make harness wire)
           (min_precedes ?occ2 ?occ3
                make_harness_wire))))
```

(Source: ISO/CD18629-44 Annex B)

Modeling challenges - 1

- Operationalizing the constructs
 - Representing the same thing at different phases as a unified construct: the endurant vs. perdurant distinction
 - Transforming the behavioral rules of a business process into executables
 - Maintaining proper relationships as constructs are decomposed along life-cycle
 - Ensuring consistency of aggregations and Complementary concept use

Modeling challenges - 2

- I dentifying tool ready meta-models
 - Validate the meta-model of Annex B
 - A robust meta-model for Object View creation and use in real-time
 - Matching required functional operations with capabilities of a Functional Entity
- Transcribing existing partial models into 19440 terms and syntax
- Articulating a methodology for use

Future actions

- ISO/FDIS 19440 to enter ballot this summer
 - comment resolutions to occur 2006 2007 & publication in 2007
- ISO 15704 systematic review begins this summer with revision target 2008
- NWIP for System integration using process modeling methods consistent with a reference methodology
- NWIP for Requirements for enabling enterprise interoperability in manufacturingenterprise processes and their models

NWIP Process Integration

- This standard specifies those <u>informational</u> characteristics that a process <u>model must</u> exhibit in order to enable:
 - assessment of manufacturing process efficiency
 - 2. support process improvement
 - 3. extraction of process operational information relevant to process performance
 - 4. enhance comprehension and communication between enterprise manager, process experts, and process analyzer.

Process characterization

Context Integrate Architect Interop. Future

Requirements

Characterization of processes

Inputs
Outputs
Logical relationships/rules
Resources
Organizational role
Process categories
Recursive notations
Context/scenario
Transactions

Activities
Logical decisions
Time and sequence
Mechanisms/Control
MoE/MoP
Process hierarchy
Object state transition
Exceptions
Process evolution

Documentation

Only conceptual integration

- Does not include descriptions of process composition or otherwise aggregate into larger frameworks or architectures.
- Not a process characterization language but rather characterizes the range of processes so that suitable languages are developed to support process characterizations.

NWIP Enterprise interoperability

- Establishes a base for interoperation in unified, integrated and federated operational environments of manufacturing enterprises
- Defines an interoperability framework and specifies processes and underpinning metadata that must be in place to establish or to negotiate and enable enterpriseinteroperability solutions for Manufacturing-Enterprise-Processes (MEPs) and their models
- Focus on enabling the communication rather than defining the communication itself

Interoperability Framework

- Interoperability framework defines operational levels (data, service, process, business) of the enterprise at which interoperability is anticipated
- I dentify conceptual, technical, and organizational barriers to interoperability at these enterprise levels that currently exist
- Solutions to overcome those barriers are presented as parts of this standard.

Interoperability approach

- Unified and Integrated
 - Have common meta-model and representation (19439 & 19440)
 - Allow normative requirements to barrier solutions
- Federated
 - Require a priori knowledge about information to exchange
 - Require more elaborate negotiation

- I dentify aspects of ISO work beneficial to BMIDTF efforts
- Submit BMI DTF work products as input to ISO working groups in TC184/SC5 and perhaps ISO/IEC JTC1
- Formalize liaisons or identify appropriate representatives to allow comment submissions

Future SC5 Efforts

- Simulation tool integration requirements and criteria
- Use case for multiple standard use
- Coordinated asset registry
- Activity integration across levels
- Terminology harmonization
- Database of software unit capability
- Automation security