Architectural Principles for Enterprise
Frameworks

Richard A. Martin', Edward L. Robertson?, and John A. Springer?

! Tinwisle Corp., 205 N College Ave., Bloomington IN 47404
2 Computer Science Dept., Indiana University, Bloomington IN 47405
Supported by NSF grant ISS-82407.

Abstract. This paper continues our work on the analysis and formaliza-
tion of enterprise architecture frameworks, proposing a number of prin-
ciples related to the construction and use of these frameworks. These
principles are intended to guide the development of a formal foundation
for frameworks. Enterprise architecture frameworks organize, manage,
and interrelate the wide variety of models used to structure and operate
an enterprise. The principles are drawn from analyses of a number of
existing frameworks and from observation of and participation in frame-
work development. Since these frameworks involve modeling, some of the
principles apply to broader aspects of modeling; other principles apply
only to frameworks. As the goal of this work is a requirements specifi-
cation for formalization of frameworks, the paper ends with a sketch of
how the identified principles might guide this formalization.

1 Introduction

An enterprise architecture framework is a means to understand an enterprise
or class of enterprises by organizing and presenting artifacts that conceptualize
and describe the enterprise. An enterprise® is a collective activity in a particular
domain, with actors sharing a common purpose; an enterprise can be a business,
a collection of businesses with a common market, a government agency, etc.
Architecture is a metaphor to the realm of office towers and bridges, intended
to capture the use-oriented, as opposed to construction-oriented, aspects of the
design of those structures. A framework is a structured container for holding and
interconnecting things* — in the remainder of this document those things are ar-
tifacts that comprise the enterprise architecture. In framework contexts, artifacts
are almost always models of some kind, which we sometimes call “components”
to indicate that they are pieces of the entire framework. In the following, “frame-
work” will always be a shorthand for “enterprise architecture framework”.

3 The word “organization” is a common synonym for enterprise, but we must often use
“organization” to denote the way things are organized and thus restrict it to that use.
4 As another metaphor, think of a framework for electronic components which both
holds circuit boards and provides for wiring between those boards.

Frameworks have been widely used. The Information Technology Manage-
ment Reform Act of 1997 led to the US Government’s Federal Enterprise Archi-
tecture Framework (FEAF), which “describes an approach, including models and
definitions, for developing and documenting architecture descriptions”[14]. It is
being deployed in all non-military agencies of the US Government. The annual
ZIFA Forums[19, register as a “friend”] have included nearly 100 case studies
highlighting the benefits of frameworks. Bernus et al.[2] give several thorough
case studies (along with an extensive discussion of enterprise architecture issues).

Whether the frameworks address manufacturing operations, process control,
information systems, or government bureaucracy, the artifacts produced to de-
scribe the enterprise comprise a valuable asset requiring its own distinct manage-
ment. Managing and gaining full value from that asset is the reason enterprise
architecture frameworks are conceived, built, and used. Professional practice has
taught us about the fragility of isolated application silos on islands of automation
and about the difficulty in achieving interoperability under such circumstances.
While these are typically called “data silos,” the significant problem is that they
are in fact model silos. That is, the mismatch of underlying models is the greatest
impediment to interoperability.

In spite of their wide use and importance, frameworks have all been defined
only descriptively. This means that it is currently impossible to formally relate
different frameworks, to say nothing of implementing tools that properly support
these frameworks.® This paper works toward correcting that deficiency, as part
of a larger project which seeks to characterize and formalize frameworks.

This work is about frameworks in general and not about any one particu-
lar framework. Although our original motivation was the Zachman Framework
for Enterprise Architecture[18,19], we examined and incorporated several other
frameworks, which are itemized in Sect. 2. Moreover, this work is about struc-
ture and not about contents. Thus “framework” by itself indicates a collection of
descriptions and principles for organizing framework contents while “framework
instance” indicates the use of a framework describing one particular enterprise.

The primary goal of this paper is to develop a set of principles to guide any
effort to understand and formalize the use of frameworks to support organization
and interaction of the many models associated with an enterprise. This work
therefore continues our effort to formalize the ways in which these particular
frameworks manifest the architecture of an enterprise[10], with an eye toward (%)
connecting a framework instance’s contents, (#) manipulating those contents and
connections, and hence (#4) relating different frameworks and recasting instances
from one framework standard to another. While our primary goal in developing
these principles is to use them to guide our formalization activities, we hope that
many are directly useful in the development of individual frameworks.

5 There are software packages that purport to implement various frameworks, but these
packages only implement the “holding” aspect of frameworks. That is, they are tools for
editing and managing representations which populate a framework instance, without
respect to the semantics that the framework provides.

Section 2 begins this paper with a discussion of the origin and (to the extent
possible) validation of the principles. Section 3 introduces a few principles that
are general in nature, applicable to any modeling and analysis endeavor,® while
Sect. 4 discusses principles especially pertinent to frameworks. We then conclude
this document by considering how these principles guide the formalization of
frameworks.

2 Origins of the Principles

The principles described below come from (%) evaluation and comparison of dif-
ferent frameworks, (i) observation of the process of defining frameworks, and
(#i4) participation in this same process.

Principles are largely based on analysis of the framework architectures: Zach-
man[19], a revision to the European pre-standard ENV 40003:1990 Computer In-
tegrated Manufacturing: Systems Architecture Framework for Modeling[16], ISO
Standard 15288 Systems engineering — System life cycle processes[7], and the US
Defense Department’s C4ISR Architecture Framework[4], an analysis which we
reported in [11].7

Principles are also based on professional observation and participation — of-
ten experience of the difficulties which arise when these principles are not fol-
lowed. Draft working notes from ISO efforts illustrate such difficulties, as in
the statement “Something is not very clear - the distinction between the in-
teroperability of process models and the interoperability of processes”[9], which
reflects principle 4 about meta-levels. Our own professional experience includes
constructing and analyzing models in an enterprise context, teaching modeling,
and participating in the development of international standards for enterprise
architectures.®

We do not claim to have originated all these principles. Several are simply
our statements of well-established suggestions (e.g. 6, “Do not hide architecture
in methodology”, which is a rephrasing of the data independence principle[3])
Principles reflecting some of the same concerns as ours have been identified else-
where [5,8,17], although these other principles are largely directed at insuring
the fidelity of the modeling process; intersections with our principles will be men-
tioned as they occur. We include them all because we intend this compendium
as a basis for the formalization that we will briefly sketch in Sect. 5.

Occasionally specific facts are given in evidence. Only a few principles can
be supported so concisely. One such principle (11), that states the independence
of three commonly correlated scales, is supported by examples high in one scale

5 We are still using “framework” as a shorthand for “enterprise architecture frame-
work”, but it would be a valuable exercise to see which of these principles hold for
other classes of frameworks.

7 Space limitations make it impossible to repeat that analysis here.

& Richard Martin is convener of TC 184/SC 5/WG 1, “Modeling and architecture”, of
the International Standards Organization.

but low in another. Unfortunately, principles that describe general behavior do
not admit such concise support. This is very loosely similar to the difference
between existential and universal propositions, in that one instance proves the
former.

Perhaps the most insightful principle is principle 10, which recognizes that
decomposition uses both grids and trees. We first observed this duality in the
context of adding detail within a Zachman framework[6], necessitating the use of
recursion within a frame. This principle has been validated by its use in compar-
ing frameworks[11] and its value in the development of international standards,
particularly ISO 15704:2000 [7].

Many principles focus on highlighting and refining distinctions (such as prin-
ciple 5, which distinguishes dependency and temporal order). They arise from
observation of the ways in which people model, and the successes and the diffi-
culties encountered therein.

Principles may be descriptive, describing the way that model artifacts are
constructed and organized, or prescriptive, recommending how they should be.
However, prescriptive principles all began as observations of the form “People
have trouble with” Prescriptive principles of course guide practice; but they
also guide the formalization effort, indicating what should be facilitated or dis-
couraged.

3 General Principles of Modeling

Modeling as we mean it is a conceptual exercise, only analogously related to
physical modeling as in, say, model railroads.® Conceptual modeling does yield
representations in a particular medium, not necessarily a medium with physical
manifestations, but these are representations of the modeled concepts. Thus
principles apply to both concepts and representations.

Each of the following principles begins with a short phrase (indicated in that
manner) which identifies and hopefully summarizes the principle.

1 Communication is a goal of modeling. Models (including frameworks) are
formal artifacts but they are developed and used by people. Therefore any
modeling formalism must be robust and tractable in interaction with non-
formal components - people. This principle is discussed at great length in
[17] and related psychological factors are discussed in [15].

2 Complexity tradeoff. There is typically a tradeoff between complexity in
the modeling medium and complexity in model instances constructed using
that medium. That is, if the underlying mechanism is too simple, then in-
stances become complex to compensate; if the mechanism is too complex,
it becomes the plaything of a very few specialists. Modeling mechanisms

9 We draw this distinction because, for most people, the first connotation of “make a
model” is to construct a model railroad or something similar. Model railroads diminish
function but primarily reduce physical scale; indeed, the first descriptor applied to a
model railroad is its “gauge”, or physical scale.

therefore should be defined with an attempt to find a “sweet spot” where
these complexities are in balance. The success of Entity-Relationship (ER)
models is attributable to this balance.[1] Of course we must remember that
different modeling efforts have different sweet spots. The Unified Model-
ing Language[13] is an aggregation of several modeling mechanisms, each of
which seeks to establish a “sweet spot” with respect to the representational
needs of the content being modeled.

3 Naming matters. Naming, 4.e. the assignment of a string!® to a concept
or artifact, serves as the bridge between formal artifacts and human inter-
pretation. That is, there are two sides to naming: “external” (relating to
the real world) and “internal” (relating to the mechanism and models of
a framework). Said another way, internal naming involves formal meaning
while external naming involves human understanding of that meaning.
Because names serve a role in human communication as well as one related
to formal structure, naming must be done with great care. Of course the
formalism works equally well whether the names used are well understood
by human participants or are merely nonsense terms, as long as meaning is
unambiguous (This fact is quite beneficial, since it allows the focus to be on
the human /ontological aspects of name choice). Naming has important (and
sometimes unexpected) consequences because that name typically has other
associations. Even professionals often use the same names with different
meanings. Thus, the development of ontologies and ontological methods to
manage naming is complementary to the study of formalisms for framework
expression.

4 Use “meta” with great care, because the term is seriously overloaded. This

particularly applies when discussing meta-levels. This is particularly true
because “meta” is a relative term, not an absolute.
One obvious example of the relativeness of “meta” is observable in the realm
of ER modeling. There, the meta-model level decomposes all models into En-
tities and Relationships; the model level may decompose a particular model
for corporations into Department, Employee, Project (instances of Entity),
Works_For (instance of Relationship), etc.; the model population level (for a
fixed corporation) into Sales, Human Resources, Accounting, etc. (instances
of Department). Thus the model level is meta with respect to the model pop-
ulation and ER notation is the meta-meta level for the model population.
Notice that “instance” is also a relative term, in that it does not indicate
an absolute level but only the level below X when used in the phrase “in-
stance of X”. Also, “meta” is roughly the inverse of “instance of”, in that
the meta of an instance of X is in fact X'. However, since our interest focuses
on models and meta-models, henceforth “instance” shall denote artifacts at
the model level; that is, Department, Employee, Works_for, etc in the above
example.

5 Dependency is not chronology. That is, just because B depends upon A, it is
not necessary that B follows A in time. For example, there is a dependency

OWe do not use “label” because we want to restrict that term to a specific use.

in the general activities of SaLEs ~ SurppPing ~» PropucTiON, in that the
purpose of Surpping is to fulfill Sares and the purpose of Probucrtion is to
enable Surpping. While an individual sale (an operation deriving from Sares)
is followed by a shipment, in an ongoing enterprise (where sales occur over a
long time) it is not the case that SaLEs as a unit precedes Smipping. Moreover,
an operation of Propuction must occur before the corresponding Suipping
and might even occur before the corresponding Sares event, even though
the purpose of the first followed from the second. Indeed, this aspect of
anticipation - separating timing from dependency - is a central reason for
enterprise modeling (whether formal or informal).

6 Do not hide architecture in methodology. It is wrong to bury characteri-
zations of things in methods that are used to construct them. This is not
to claim that methods do not constrain results (indeed it would be most
foolish to claim so) but rather to observe that these constraints must be
made explicit and external to the construction process. In particular, the
architectural form should survive changes in method and technology.

4 Principles Specific to Frameworks

7 Frameworks organize artifacts. A framework is a means to facilitate under-
standing of enterprises and to communicate that understanding, principally
by organizing and connecting artifacts used to represent a particular enter-
prise. Frameworks help us to take very richly textured descriptive artifacts
and arrange them for practical understanding. Frameworks help to simplify
complex presentations which are composed of many inter-related artifacts.
The organizational mechanism of a framework is primarily a collection of
dimensions along which the artifacts are placed and hence classified. It is in
the number and different natures of these dimensions that frameworks vary.
Many further principles relate to the characterization of these dimensions.

8 Distinguish structure from connectivity. Structure and connectivity are dis-
tinct aspects of frameworks'! and a framework formalization (or standard)
should distinguish them. The clarity of this distinction directly impacts the
quality of a framework; unfortunately many frameworks do not achieve their
intended impacts because they do not exhibit this distinction with sufficient
clarity. Furthermore, useful reorganizations of a framework (discussed be-
low in terms of view definitions) can be tractably expressed when phrased
in structural terms, whereas desired views involving connections may be
difficult to specify and expensive to compute.

Modeling that confounds structure and relationship is prone to both inac-
curacy and brittleness. Thus we strongly recommend that the models used

HyWe find it helpful to visualize a computer room where frames both hold devices
(servers, disk drives, communications interfaces, etc.) and provide channels for wiring
these devices together. A second metaphor is between bone (structure) and muscle
(connection); this emphasizes that operation largely occurs through the connections.

within a framework exhibit the same distinction; fortunately many common
models do, including entity—relationship, process—flow, personnel-reporting
line in an organization chart.

9 Separate policy from mechanism. That is, policy should be found in frame-
work contents and not framework structure. As their goal is to facilitate
understanding, frameworks provide (structural and connective) mechanism
rather than delineate policy concerning enterprise management. Within an
instance of a framework, representation of such understanding may con-
strain the operation of a particular enterprise and that framework may of
course define policies. This parallels a distinction between mechanism and
policy that was popularized in the conceptualization of computer operating
systems.

10 Two aspects of organization. There are two general ways in which items
within a framework are (typically) arranged: (i) in an ordinant structure
(that is, a table, grid, or matrix) or (i7) in a decompositional structure (that
is, a tree). We call either of these dimensions of the arrangement. Dimensions
of either kind are discrete'? and ordinant dimensions typically have only a
few coordinate positions. The coordinate positions of an ordinant dimension
may be ordered (e.g. rank) or unordered (e.g. gender), while a decomposi-
tional dimension is always ordered only by its containment relation.

An important step in organizing artifacts is to identify and characterize (as
ordinant or decompositional) the dimensions that define the structure. The
definition of an ordinant dimension is the identification of its coordinates
and, where relevant, the order of those coordinates. Recall that dimensions
only describe the placement of items (in a real or conceptual space) and not
the interconnection of these items, which is typically much richer and more
complex.

Individual artifacts, in turn, are identified within a framework by name. A
name can indicate a coordinate position along a particular ordinant dimen-
sion or indicate one member of a collection. When a string is used as a name
in one of these contexts, we will refer to it as a label. Such a label has mean-
ing fixed by formalism within a formal context; but when viewed in isolation
that fixed meaning may be lost.

11 Three aspects of scale. There are (at least) three distinct dimensions that
reflect conceptual (as opposed to physical) scale: (i) abstractness, ranging
from abstract to concrete, (i¢) scope, from general (generic) to special (spe-
cific), and (#44) refinement, from coarse to fine. Using the terminology of
principle 10, abstractness, and scope are ordinant-ordered and refinement is
decompositional.!3
Because it is common to have co-occurrence of the origin or extreme end-
points in all three dimensions (as a module that is concrete, specific, and

'?This statement necessarily holds for decompositional dimensions but is sometimes
relevant to distinguish meta-coordinates from instance coordinates where ordinant di-
mensions are involved.

!3Tn fact, refinement is often the canonical hierarchy.

finely refined), these three dimensions are often confused. But they are in fact
independent. Examples validating this independence occur in: (i) ER models
(fully developed, with all attributes, relationship constraints, etc), which are
both abstract and finely refined; (i4) ISO 19439, where the “Generic” plane
includes items across the range from abstract to concrete; and (4i7) C4ISR,
where technically detailed products span a range of operational abstraction.
Understanding (and distinguishing) conceptual scales is essential because
they govern the ways in which framework dimensions are conceived, ordered,
populated, and constrained.

The fourth principle of Greenspan et al.[5, §2] focuses on abstraction and
refinement, although without a firm distinction between the two.

The following principles seem less likely to guide practice than those itemized

above. That is, they are more purely specifications for our intended formalism
development.

12

13

14

One dimension manifests purpose within a framework. One, and typically
only one, of a framework’s ordinant-ordered dimensions reflects the pur-
posive nature expressed within a framework. Note that such a “purposive
dimension” does not represent the purpose of the framework but instead
represents the fact that artifacts derive their purpose from artifacts earlier
in the dimension’s order (most often through elaboration). Examples of such
purposive dimension are Role in the Zachman framework, Model Phase in
ISO 19439, Process Group in ISO 15288, and Guidance in C4ISR. Derived
dimensions, produced through views (see principle 16 below), may also ex-
hibit a purposive order; the C4ISR’s “Force Integration” dimension, derived
from a command-structure hierarchy, exhibits the purpose inherent in any
chain of command.

The ordering of a purposive dimension often manifests itself as causality,
dependency, or chronology. However, it is not merely a time dimension,
even though purpose in a framework often leads to temporal ordering in the
operations of the enterprise. This indeed follows from general principle 5.
Refinement is recursive. The decompositional scale dimension, refinement, is
fundamentally different in that it works (or at least works best) through de-
composition and successive refinement. Thus frameworks should be recursive
in their application. Unfortunately, practice often foreshortens the recursion,
forcing a fixed (albeit hierarchical) or flattened structure.

A major benefit of recursion in framework structure is that it directly sup-
ports a “drill-down” approach to framework development and exploration.
To manage and comprehend the richness present in a framework, it is neces-
sary to separate the artifacts such that detail is hidden until revealed for con-
sideration. Recursion is the mechanism for providing this layered approach.
Furthermore, recursion greatly facilitates building one unified framework out
of several here-to-fore independent ones.

All context is relevant. It seems necessary, as one moves through a framework
along its purposive dimension, from row to row in a Zachman framework

for example, that the entire framework structure at one row is potentially
relevant when describing a component at the next.

15 Connections can be of arbitrary arity. Connections between framework ar-
tifacts can be of arbitrary arity, although binary ones are most common.
However, it is sufficient to provide for the construction of arbitrary connec-
tions using binary ones. For example, a Relationship in an ER model may
be constructed to have any degree, but the basic connections are always
between a single Entity and a single Relationship.

16 Views are important in standards and methodologies. A framework formal-

ism should provide a general mechanism for defining views. Views are used
in enterprise modeling because the complexity of an enterprise makes it
impossible for a single descriptive representation to be humanly comprehen-
sible in its entirety. The notion of view is inherent in any large, complex
structure observed and managed by many individuals who neither can nor
should attempt to analyze, design, or implement the entire structure.
The view mechanism should be general and dynamic. It must be general be-
cause there is little commonality of particular views across frameworks. Al-
though particular framework standards have often been defined with fixed,
predefined views intended to usefully “package” subsets of their complex
space,'* we have seen increasing awareness that views must be dynamically
definable. Furthermore, views can be quite simple or very elaborate depend-
ing upon the intended use. The view mechanism should facilitate dynamic
extraction and restructuring of an enterprise model from various conceptual
perspectives.

17 Construction through views. Views are not merely used for viewing; they
are often used for constructing and populating frameworks. For example,
entities are placed in the ER model through the “information view” rather
than into the complete framework. Thus the “view update” problem from
the world of relational database reappears in the context of frameworks.

18 Constraint mechanisms are necessary. Framework standardization, as cur-
rently practiced, augments the frameworks themselves with voluminous texts
constraining how frameworks are to be constructed or applied. In spite of
considerable effort, such texts are inconsistent, ambiguous, and difficult to
apply. Such application is of course limited by the degree to which con-
straints fall wholly within a framework, since a constraint that is even par-
tially outside of the framework is not enforceable within the framework.
Framework formalization should provide a foundation upon which unam-
biguous, concise, and effectively computable constraint mechanisms can and
should be built.

Beyond the simple observations that informal constraints exist and formal
ones are highly desirable, at this point we can draw no further principles
concerning constraints. Because current frameworks are largely structural,

14Such views are often described as if they comprise a distinct dimension, but such
a collection of views is an artifact of the process rather than part of the underlying
framework.

the constraints we observe are also structural. We do caution that constraints
are also subject to considerations about meta-levels — in particular, model
constraints must be distinguished from instance constraints.

The above principles characterize many of the frameworks that are concerned
with domains at the enterprise level, although we have found no framework
that exhibits all of these principles. Collectively, these principles constitute the
foundation upon which useful enterprise frameworks are constructed.

5 Toward Framework Formalizations

While the previous sections discussed principles obtained from observation and
analysis of existing frameworks, this section outlines how these principles guide
formalizing enterprise frameworks. Although the individual framework instance
is of course the formalized artifact, the following discussion is directed toward
“architectural” standards that prescribe how a collection of frameworks is to be
formalized.

There are four major aspects of a formalism that follow from the above prin-
ciples. We itemize these four and justify why they should be treated distinctly.
The long version of this paper then delves more deeply into these four aspects[12].
structure: the way that components and sub-components of an enterprise are

placed within a framework. Principles 10 — 13 guide the elaboration of this

aspect.

connections: the manner in which components and sub-components of an enter-
prise are interconnected within a framework. It is through these connections
that the operations of an enterprise are manifest.

views: formal mechanisms for restructuring a framework to emphasize features
from a particular conceptual or operational perspective.

constraints: formal mechanisms by which the conformance of a particular in-
stance to a standard or architecture may be evaluated.

The deliberate separation of structure and connections is a direct conse-
quence of principle 8. A framework is thus a structure for holding artifacts and
a mechanism for connecting them.

The needs for views and constraints are enunciated in principles 16 and 18
respectively. While it is necessary to draw distinctions between structure and
connections, it is advantageous to do the opposite, drawing parallels between
views and constraints. In particular, the ability to define views immediately
enables constraints definable in terms of views, as in “view A is a subset of view
B”.

A formalism for framework structures provides the foundation upon which
formalizable, and therefore precise and coherent, view mechanisms can be built;
and, conversely, view mechanisms provide the formalism through which one sin-
gle overarching structure is coherently and consistently created by these many
individuals.

6 Conclusion

We have identified 18 principles about the ways in which frameworks are or
should be constructed and used, but this is only one step on a longer path. These
principles will guide the formalization of frameworks, as discussed in section 5,
but we are early in the work of that formalization. It is evident that the structure
of a framework is carried by a tree whose nodes have a tabular, dimensional form,
but many details governing the expression of structure and the interaction of this
expression with connections, views, and constraints are yet unknown. Because
existing frameworks do not treat connections in a disciplined manner, there is
less guidance concerning connections from existing practice.

Finally, it is important that the formalization attempts to reach “sweet
spots”, as discussed in principle 2.

In as much as the principles enunciated herein are the core of a “require-
ment specication” for analysis and formalization of frameworks, we welcome all
suggestions and comments.

References

1 C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design: An Entity-
Relationship Approach. Benjamin/Cummings, Redwood City, CA, 1992.

2 Peter Bernus, Laszlo Nemes, and Gunter Schmidt, editors. Handbook on Enterprise
Architecture. Springer Verlag, 2003.

3 C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1981 ff.

4 Department of Defense — Architecure Working Group. C4ISR Architecture Frame-
work, Version 2.0, 1997.

5 Sol J. Greenspan, John Mylopoulos, and Alexander Borgida. On formal require-
ments modeling languages: RML revisited. In International Conference on Soft-
ware Engineering, pages 135-147, 1994.

6 W. Inmon, J. Zachman, and J. Geiger. Data Stores, Data Warehousing, and the
Zachman Framework. McGraw-Hill, 1997.

7 International Organization for Standardization. All ISO documents are available
from www.iso.ch.

8 International Organization for Standardization. Concepts and terminology for the
conceptual schema, 1987. No long available through [7].

9 International Organization for Standardization TC 184, SC 5, WG1. N450 Meeting
Minutes, St. Denis, France, Nov. 2003. forums.nema.org/ iso_tc184_scb_wgl.

10 Richard Martin and Edward Robertson. Formalization of multi-level Zachman
frameworks. Technical report, Computer Science Dept., Indiana Univ., 1999.
Www.cs.indiana.edu/ftp/techreports/TR522.html.

11 Richard Martin and Edward Robertson. A comparison of frameworks for enterprise
architecture modeling. In ER2003 - 22nd Intl. Conf. on Conceptual Modeling,
pages 562-564, 2003.

12 Richard A. Martin, Edward L. Robertson, and John A. Springer. Architectural
principles for enterprise frameworks. Technical report, Computer Science Dept.,
Indiana Univ., 2004. www.cs.indiana.edu/ftp/techreports/TR594.html.

13 Object Management Group. Unified Modeling Language. www.uml.org.

14

15

16

17

18

19

U. S. General Accounting Office. Information technology: A framework for assess-
ing and improving enterprise architecture management, 2003.

Keng Siau. Information modeling and method engieering: A psychological perspec-
tive. J. of Database Systems, 10(4):44-50, 1999.

The European Committee for Standardization. CEN ENV 40 003, Computer In-
tegrated Manufacturing: Systems Architecture Framework for Modeling , 1990.
Terje Totland. Enterprise Modeling as a Means to Support Human Sense-making
and Communication in Organizations. PhD thesis, Norwegian University of Sci-
ence and Technology, Department of Computer and Information Science, August
1997.

J. A. Zachman. A framework for information systems architecture. IBM Systems
Journal, 26(3), 1987.

Zachman Institute for Framework Advancement. The Zachman Framework. Vari-
ous pages at www.zifa.com; the “Quickstart” is particularly relevant.

This article was processed by the author using the TEX macro package from Springer-
Verlag.

