Architectural Principles for Enterprise Frameworks

Richard Martin Tinwisle Corporation Bloomington, Indiana Edward Robertson and John Springer Computer Science Department Indiana University

Architectural Principles for Enterprise Frameworks

- Landscape
- Sources
- Principles
 - Characterization
 - General
 - Framework
- Formalization

The Framework Audience

- Users of categorical comparison
 - Partitioned dimensions and domains
 - Intuitive and formal relationships
- Enterprise participants
 - Stakeholders
 - Model builders
 - Model users
 - Developers of modeling tools
 - Research engineers and scientists

Our Framework Effort

- Formalism published in 1999
- Presented to business and scientific community – see EMMSAD'00
- On-going assessment of applicability to published "enterprise frameworks"
- Continuing research activity viewing
- Evolution of "enterprise architecture"

Our EMMSAD'04 Goals

- Principles are "Requirements Specification" for formalization
- Seek your input on principles & approach
 - Do they reflect your experience?
 - Do they cover necessary aspects of architecture?
 - Do they address the real enterprise-level issues?

Origins of Principles

- International Standards
 - ISO/CEN FDIS 19439 CIM Systems Integration: Framework for Enterprise Modelling
 - ISO 15288:2002 Information Technology Life
 Cycle Management System Life Cycle Processes
- Industrial & Governmental Models
 - Zachman Framework for Enterprise Architecture
 - C4I SR (United States Department of Defense)
- Professional Experience

ISO/CEN FDIS 19439

Landscape Sources **Principles** Formalization

CIM Systems Integration:

Framework for

Enterprise Modelling

Particular level generic level partial level organization view enterprise model phase domain identification information view concept definition **function** view enterprise modelling view requirements definition design specification implementation description domain operation decommission definition

genericity

Architectural Principles for Enterprise Frameworks

15288 - Process Hierarchy

Landscape
Sources
Principles
Formalization

System Life Cycle Processes Mgmt Enterprise Environment Mgmt Investment Mgmt Resource Mgmt Quality Mgmt Project Planning Project Assessment Project Control **Decision-making** Risk Mgmt **Configuration Mgmt** Information Mgmt Stakeholder **Validation** Operation Requirements **Transition** Definition Maintenance Verification Requirements Analysis **Architectural Design** Integration Disposal **Implementation**

Landscape Sources Principles Formalization

C4I SR Version 2.0

Figure 2-2. Fundamental Linkages Among the Views

Source: Architecture Working Group, C4I SR Architecture Framework Version 2.0, 1997

Zachman Framework for Enterprise Architecture

Landscape
Sources
Principles
Formalization

ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Organizations Important to the Business	list of Events Significant to the Business	List of Business Goals/Strat	SCOPE (CONTEXTUAL)
Planner	ENTITY = Class of Business Thing	Function = Class of Business Process	Node = Major Business Location	People = Major Organizations	Time = Major Business Event	Ends/Means=Major Bus. Goal/ Critical Success Factor	Planne
ENTERPRISE	e.g. Semantic Model	e.g. Business Process Model	e.g. Logistics Network	e.g. Work Flow Model	e.g. Master Schedule	e.g. Business Plan	ENTERPRISE
MODEL (CONCEPTUAL)		-				•••••	MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Reln = Business Relationship	Proc. = Business Process I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Own
SYSTEM	e.g. Logical Data Model	e.g. "Application Architecture"	e.g. "Distributed System Architecture"	e.g. Human Interface Architecture	e.g. Processing Structure	e.g., Business Rule Model	SYSTEM
MODEL (LOGICAL)		—		<u>-</u>		00000	MODEL (LOGICAL)
Designer	Ent = Data Entity Reln = Data Relationship	Proc .= Application Function I/O = User Views	Node = I/S Function (Processor Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event	End = Structural Assertion Means =Action Assertion	Designe
TECHNOLOGY	e.g. Physical Data Model	e.g. "System Design"	e.g. "System Architecture"	e.g. Presentation Architecture	e.g. Control Structure	e.g. Rule Design	TECHNOLOGY
MODEL (PHYSICAL)		4					MODEL (PHYSICAL
Builder	Ent = Segment/Table/etc. ReIn = Pointer/Key/etc.	Proc.= Computer Function I/O = Screen/Device Formats	Node = Hardware/System Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Means = Action	Build
DETAILED	e.g. Data Definition	e.g. "Program"	e.g. "Network Architecture"	e.g. Security Architecture	e.g. Timing Definition	e.g. Rule Specification	DETAILED
REPRESEN- TATIONS (OUT-OF- CONTEXT)							REPRESEN- TATIONS (OUT-OF CONTEXT)
Contractor	Ent = Field Reln = Address	Proc.= Language Stmt I/O = Control Block	Node = Addresses Link = Protocols	People - Identity Work = Job	Time = Interrupt	End = Sub-condition Means = Step	Su Contractor
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRIS

Zachman Institute for Framework Advancement - (810) 231-0531

Copyright - John A. Zachman, Zachman International

Interrogatives ————

(used with permission)

0

е

S

Professional Experiences

- Observing our practice
- Performing model integration
- Developing international standards
- Teaching software engineering
- Managing in enterprises
- Participating in workshops

Framework characteristics

A containment structure

- organization and presentation
- context for model artifacts
- interconnections between models
- access to model components
- model fidelity and consistency

NOT a programming framework.

General Principles

- Models are formal artifacts developed and used by people.
- 2. A complexity tradeoff exists between modeling medium and model instances in that medium.
- 3. Naming serves as the bridge between the formal and the human.
- 4. Separate model and instance decompositions– do not confuse meta-levels.
- Dependency is not chronology
- 6. Don't hide architecture in methodology.

Framework Principles

- 7. Frameworks organize artifacts to facilitate understanding.
- 8. To improve quality, distinguish structure from connectivity.
- 9. Separate policy from mechanism.
- 10. Both grid (ordinant) and tree (decomposition) structures appear in models.
- 11. Scale dimensions include:
 abstractness (abstract to concrete),
 scope (general to special) and
 refinement (coarse to fine).

Framework Principles

- 12. Within a framework, use of components are driven along one ordered dimension.
- 13. Along this ordered dimension, all prior context is relevant.
- 14. Refinement is recursive.
- 15. Connections can be of arbitrary arity.
- 16. Views are important in standards and methodologies.
- 17. Views are used both to "see" contents and to "create" contents.
- 18. Separate model and instance constraints.

Meta-confusion

Distinguish structure from connectivity

Landscape
Sources
Principles
Formalization

Architectural Principles for Enterprise Frameworks

Landscape
Sources
Principles
Formalization

Two structural aspects

Three aspects of scale

- Abstractness, scope, and refinement
- Examples of dimensional independence:
 - E-R diagrams are abstract but have rich refinement when fully populated.
 - 19439 Genericity contains constructs for use along a generalization gradient with a range of phase abstractions.
 - Zachman interrogative proto-types are abstract with concrete model contents.
 - C4I SR products span operational abstractions with technical refinement.

Scope dimensions

Purposeful dimension context

- Zachman: Role
 - {Context, Owner, Designer, Builder, Out-of-context}
- ISO\CEN FDIS 19439: Model Phase
 - {Domain, Concepts, Requirements, Design, Implementation, Operation, Decommission}
- ISO 15288: **Process Group**{Agreement, Enterprise, Project, Technical}
- C41 SR: Guidance
 - {Focus, Scope, Characterize, Determine, Build, Use}

Recursive refinement cf. I SO 15288

Landscape
Sources
Principles
Formalization

Views are important

- For communication and analysis
- Examples:
 - ISO\CEN FDIS 19439: View {Function, Information, Resource, Organization}
 - C4I SR: View {Operational, Systems, Technical}
 - C4I SR: Integration {National, Theater, CJTF, Tactical}
- A static collection of views is insufficient.
 - ISO 15704 Amendment 1: Economic View

Toward Formalization

Range Sources Principles Formalization

Structure:

- both tree (decomposition) and grid (ordinant)
- frames and sub-frames

Connections:

- between frame components
- respects purposive order

Constraints:

- model and instance
- beyond structure and connection

Views:

- generalizes "view" in existing frameworks
- defined on structure
- attempts to carry forward connections and constraints

Framework meta-meta model

Range Sources **Principles Formalization**

branch frames:

$$F_{\alpha}$$

$$F_{\alpha}$$
 $\langle IC_{\alpha'}, OC_{\alpha'}, SF_{\alpha'}, \Phi_{\alpha} \rangle$

leaf frames:

$$F_{\alpha}$$

$$F_{\alpha}$$
 $\langle IC_{\alpha}, OC_{\alpha}, IC_{\alpha} \rangle$

$$S_{\alpha}$$

Zachman specific

where

$$\begin{array}{ll}
IC_{\alpha} & \subseteq D \\
OC_{\alpha} & \subseteq D
\end{array}$$

$$\begin{array}{c}
\mathcal{E}OC_{\alpha,r} \\
\mathcal{E}/C_{\alpha,r}
\end{array} \subset D \text{ restricted to row } r \\
SF_{\alpha} : R \times I \times D \rightarrow F \cup V$$

$$SF_{\alpha}$$
: $R \times I \times D \rightarrow F \cup VF$

$$\Phi_{\alpha} \subseteq \bigcup_{r \in \{\theta\} \cup R} (\mathbf{E}OC_{\alpha,r} \times \mathbf{E}IC_{\alpha,r})$$
Types
$$D \cup \{\text{SET OF } d : d \in D\}$$

$$S_{\alpha}: D \rightarrow \bigcup_{n \in \mathbb{N}} Types_{\alpha}^{n}$$

Toward Standardization

- ISO TC184 SC5 WG1 and CEN TC310 WG1
 - IS 14258, IS 15704, FDIS 19439
- United States government
 - Federal Enterprise Architecture Framework
 - Enterprise Architecture Management Maturity Framework
- The Open Group Architecture Framework
- Academic & Commercial
 - PERA, GERAM, ARIS, Metis, ZIFA...