
#### Architectural Principles for Enterprise Frameworks: Guidance for Interoperability

Richard Martin Tinwisle Corporation Bloomington, Indiana Edward Robertson and John Springer Computer Science Department Indiana University



Architectural Principles for Enterprise Frameworks: Guidance for Interoperability

- Landscape
- Sources
- Principles
  - Characterization
  - General
  - Framework
- Formalization

### The Framework Audience

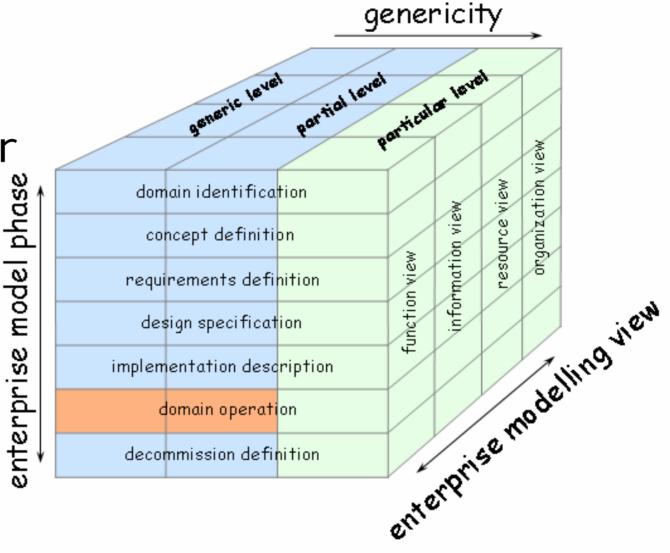
- Users of categorical comparison
  - Partitioned dimensions and domains
  - Intuitive and formal relationships
- Enterprise participants
  - Stakeholders
  - Model builders
  - Model users
  - Developers of modeling tools
  - Research engineers and scientists

### Our Framework Effort

- Formalism published in 1999
- Presented to business and scientific community – see ZIFA'02, CAiSE'04
- On-going assessment of applicability to published "enterprise frameworks"
- Continuing research activity viewing
- Evolution of "enterprise architecture"

# Our I CEI MT'04 Goals

- Principles are "Requirements Specification" for formalization
- Seek your input on principles & approach
  - Do they reflect your experience?
  - Do they cover necessary aspects of architecture?
  - Do they address the real enterprise-level issues?


# Origins of Principles

- International Standards
  - ISO/CEN FDIS 19439 CIM Systems Integration: Framework for Enterprise Modelling
  - I SO 15288:2002 Information Technology Life
    Cycle Management System Life Cycle Processes
- Industrial & Governmental Models
  - Zachman Framework for Enterprise Architecture
  - C4ISR (United States Department of Defense)
- Professional Experience

# **ISO/CEN FDIS 19439**

Landscape <u>Sources</u> Principles Formalization

CIM Systems Integration: Framework for Enterprise Modelling



#### ICEIMT'04

#### 15288 - Process Hierarchy

| Enterprise Environment Mg                     | mt System Life Cycle Pr   | ocesses Mgmt    |  |  |  |  |  |  |  |
|-----------------------------------------------|---------------------------|-----------------|--|--|--|--|--|--|--|
| Investment Mgmt                               | Resource Mgmt Quality N   | Лgmt            |  |  |  |  |  |  |  |
| Project Planning Project As                   | ssessment Project Control | Decision-making |  |  |  |  |  |  |  |
| Risk Mgmt Configuration Mgmt Information Mgmt |                           |                 |  |  |  |  |  |  |  |
| Stakeholder                                   | Validation                | Operation       |  |  |  |  |  |  |  |
| Requirements<br>Definition                    | Transition                |                 |  |  |  |  |  |  |  |
| Requirements Analysis                         | Verification              | Maintenance     |  |  |  |  |  |  |  |
| Architectural Design                          | Integration               | Disposal        |  |  |  |  |  |  |  |
| Implementation                                |                           |                 |  |  |  |  |  |  |  |

© Copyright 2004 All Rights Reserved R. Martin, E. Robertson, J. Springer

Landscape

Sources Principles Formalization

### C4I SR Version 2.0

Landscape <u>Sources</u> Principles Formalization

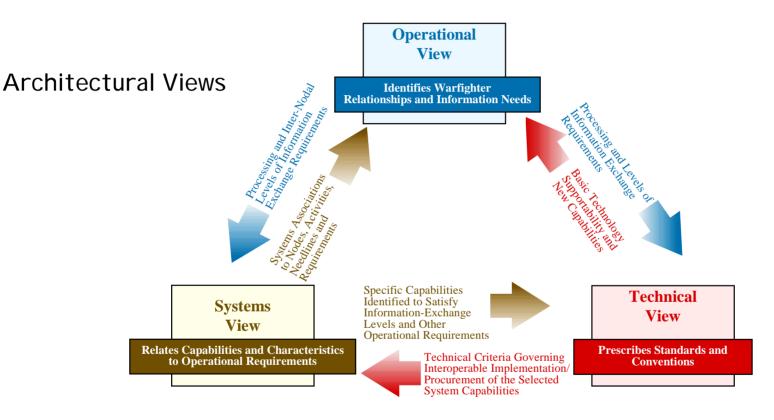



Figure 2-2. Fundamental Linkages Among the Views

Source: Architecture Working Group, C4I SR Architecture Framework Version 2.0, 1997

#### ICEIMT'04

### Zachman Framework for **Enterprise Architecture**

Landscape Sources Principles Formalization

ENTERPRISE ARCHITECTURE - A FRAMEWORK <sup>™</sup>

|                                 | DATA                                        | What   | FUNCTION                                     | How       | NETWORK                                                            | Where     | PEOPLE                                             | Who           | TIME                                          | When               | MOTIVATION                                  | Why   |                           |
|---------------------------------|---------------------------------------------|--------|----------------------------------------------|-----------|--------------------------------------------------------------------|-----------|----------------------------------------------------|---------------|-----------------------------------------------|--------------------|---------------------------------------------|-------|---------------------------|
| SCOPE<br>(CONTEXTUAL)           | List of Things Important<br>to the Business |        | List of Processes the<br>Business Performs   |           | List of Locations in which<br>the Business Operates                |           | List of Organizations<br>Important to the Business |               | List of Events Significant<br>to the Business |                    | List of Business Goals/Strat                |       | SCC<br>(CONTEXTU          |
|                                 |                                             |        |                                              |           | <sup>™</sup> ♥ ♥                                                   |           |                                                    |               |                                               |                    |                                             |       |                           |
| Planner                         | ENTITY = Class of<br>Business Thing         |        | Function = Class of<br>Business Process      |           | Node = Major Busin<br>Location                                     | 1055      | People = Major Org                                 | ganizations   | Time = Major Bus                              | iness Event        | Ends/Means=Major B<br>Critical Success Fact |       | Pla                       |
| ENTERPRISE                      | e.g. Semantic Mod                           | el     | e.g. Business Proces                         | s Model   | e.g. Logistics Netwo                                               | ork       | e.g. Work Flow Mo                                  | del           | e.g. Master Sche                              | dule               | e.g. Business Plan                          |       | ENTERPR                   |
| MODEL<br>(CONCEPTUAL)           | │                                           |        | │╶╍╋                                         |           |                                                                    | •         |                                                    | <u>,</u><br>  |                                               |                    |                                             | 2     | MO<br>(CONCEPTU           |
| Owner                           | Ent = Business En<br>Reln = Business R      |        | Proc. = Business Pro<br>I/O = Business Resou |           | Node = Business Lo<br>Link = Business Link                         |           | People = Organizati<br>Work = Work Produ           |               | Time = Business<br>Cycle = Business           |                    | End = Business Obj<br>Means = Business S    |       | (                         |
| SYSTEM                          | e.g. Logical Data N                         | lodel  | e.g. "Application Arch                       | itecture" | e.g. "Distributed Sys<br>Architecture"                             | stem      | e.g. Human Interfa                                 | ce<br>tecture | e.g. Processing                               | Structure          | e.g., Business Rule N                       | lodel | SYST                      |
| MODEL<br>(LOGICAL)              |                                             |        | │ <u></u>                                    |           |                                                                    |           |                                                    |               |                                               |                    |                                             | 2     | MO<br>(LOGIC)             |
| Designer                        | Ent = Data Entity<br>Reln = Data Relation   | onship | Proc. = Application F<br>I/O = User Views    | unction   | Node = I/S Function<br>(Processor Storage<br>Link = Line Character | etc)      | People = Role<br>Work = Deliverable                |               | Time = System E                               | vent<br>Sing Cycle | End = Structural As<br>Means = Action Ass   |       | Des                       |
| TECHNOLOGY                      | e.g. Physical Data                          | Model  | e.g. "System Design"                         |           | e.g. "System Archite                                               | cture"    | e.g. Presentation Ar                               | rchitecture   | e.g. Control Stru                             | cture              | e.g. Rule Design                            |       | TECHNOL                   |
| MODEL<br>(PHYSICAL)             |                                             |        |                                              |           |                                                                    |           | <b>ب</b><br>الم                                    |               |                                               |                    |                                             | 2     | CONSTRAI<br>MO<br>(PHYSIC |
| Builder                         | Ent = Segment/Tal<br>Reln = Pointer/Key     |        | Proc.= Computer Fun<br>I/O = Screen/Device F |           | Node = Hardware/S<br>Software<br>Link = Line Specifica             |           | People = User<br>Work = Screen For                 | mat           | Time = Execute<br>Cycle = Compor              |                    | End = Condition<br>Means = Action           |       | В                         |
| DETAILED<br>REPRESEN-           | e.g. Data Definition                        |        | e.g. "Program"                               |           | e.g. "Network Archi                                                | itecture" | e.g. Security Arc                                  | chitecture    | e.g. Timing Def                               | inition            | e.g. Rule Specificatio                      | on    | DETAI<br>REPRES           |
| TATIONS<br>(OUT-OF-<br>CONTEXT) |                                             |        |                                              |           |                                                                    |           |                                                    |               |                                               |                    |                                             |       | TATIO<br>(OUT-C<br>CONTE  |
| Sub-<br>Contractor              | Ent = Field<br>Reln = Address               | I      | Proc.= Language Str<br>I/O = Control Block   | nt        | Node = Addresses<br>Link = Protocols                               | I         | People - Identity<br>Work = Job                    |               | Time = Interrupt                              | e Cycle            | End = Sub-conditio<br>Means = Step          | 'n    | Contro                    |
| FUNCTIONING                     | e.g. DATA                                   |        | e.g. FUNCTION                                |           | e.g. NETWORK                                                       |           | e.g. ORGANIZATIO                                   | N             | e.g. SCHEDULE                                 |                    | e.g. STRATEGY                               |       | FUNCTIO                   |

#### Interrogatives

(used with permission)

#### ICEIMT'04

R

0

е

S

# Professional Experiences

- Observing our practice
- Performing model integration
- Developing international standards
- Teaching software engineering
- Managing in enterprises
- Participating in workshops

# Framework characteristics

Landscape Sources <u>Principles</u> Formalization

A containment structure

- organization and presentation
- context for model artifacts
- interconnections between models
- access to model components
- model fidelity and consistency

#### NOT a programming framework.

### **General Principles**

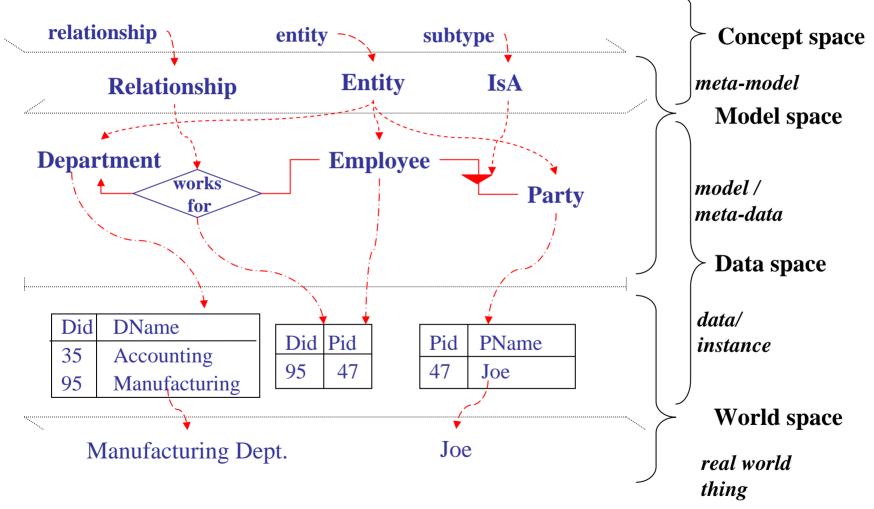
- 1. Models are formal artifacts developed and used by people.
- 2. A complexity tradeoff exists between modeling medium and model instances in that medium.
- 3. Naming serves as the bridge between the formal and the human.
- 4. Separate model and instance decompositions – do not confuse meta-levels.
- 5. Dependency is not chronology
- 6. Don't hide architecture in methodology.

# Framework Principles

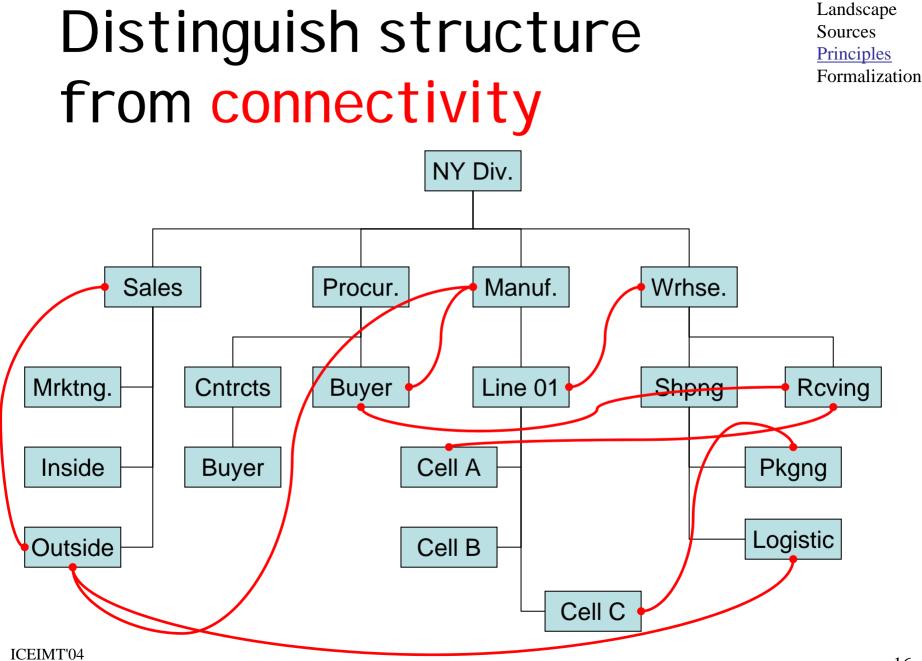
- 7. Frameworks organize artifacts to facilitate understanding.
- 8. To improve quality, distinguish structure from connectivity.
- 9. Separate policy from mechanism.
- 10. Both grid (ordinant) and tree (decomposition) structures appear in models.
- 11. Decomposition may occur at many meta-levels

12. Scale dimensions include: abstractness (abstract to concrete), scope (general to special) and refinement (coarse to fine).

# Framework Principles

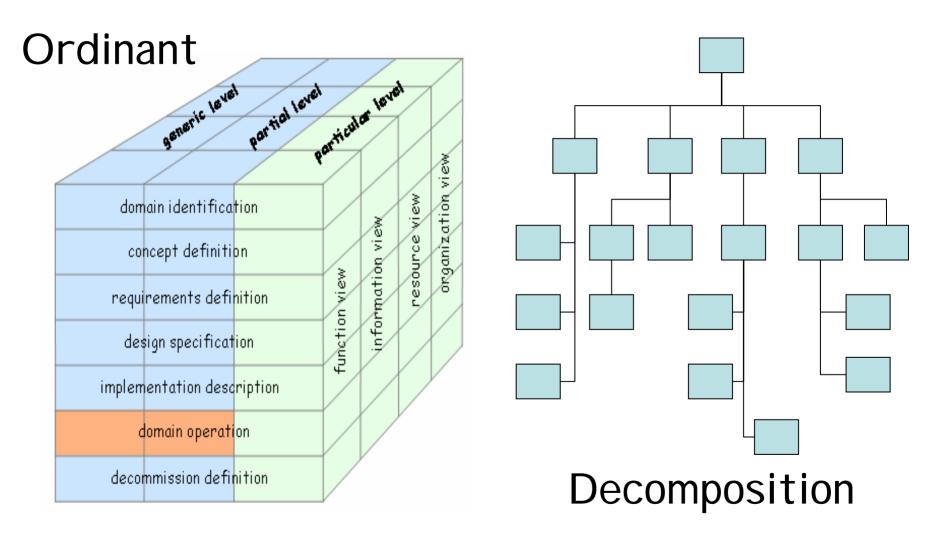

Landscape Sources <u>Principles</u> Formalization

- 13. Within a framework, use of components are driven along one ordered dimension.
- 14. Along this ordered dimension, all prior context is relevant.
- 15. Refinement is recursive.
- 16. Connections can be of arbitrary arity.
- 17. Views are important in standards and methodologies.
- 18. Views are used both to "see" contents and to "create" contents.
- 19. Constraints mechanism are necessary.
- 20. Separate model and instance constraints.


ICEIMT'04

### Meta-confusion

Landscape Sources <u>Principles</u> Formalization



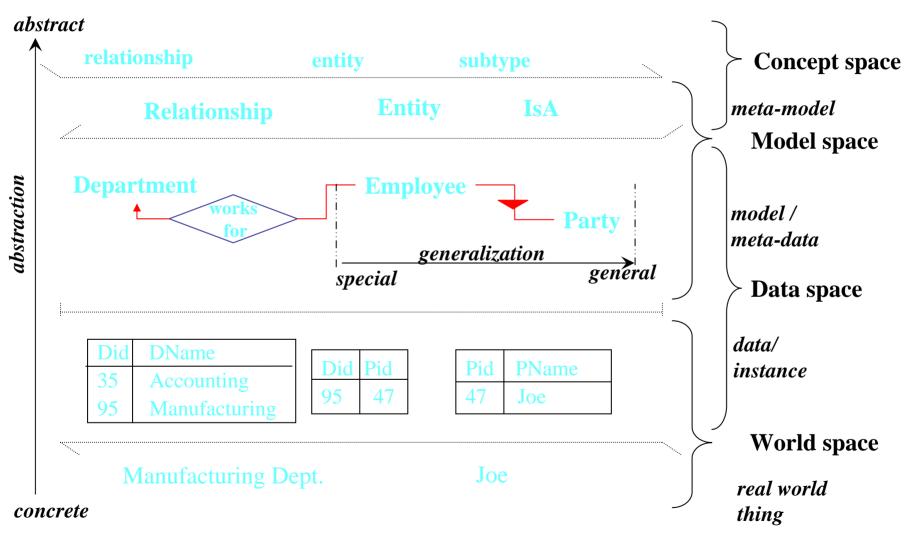

#### ICEIMT'04



### Two structural aspects

Landscape Sources <u>Principles</u> Formalization




#### ICEIMT'04

### Three aspects of scale

- Abstractness, scope, and refinement
- Examples of dimensional independence:
  - E-R diagrams are abstract but have rich refinement when fully populated.
  - 19439 Genericity contains constructs for use along a generalization gradient with a range of phase abstractions.
  - Zachman interrogative proto-types are abstract with concrete model contents.
  - C4ISR products span operational abstractions with technical refinement.

# Scope dimensions

Landscape Sources <u>Principles</u> Formalization



#### ICEIMT'04

# Purposeful dimension

Landscape Sources <u>Principles</u> Formalization

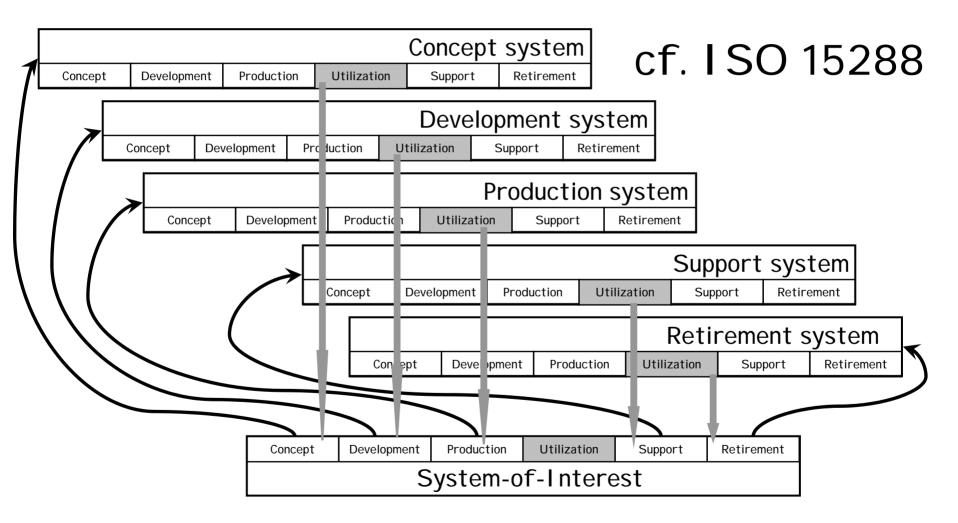
• Zachman: Role

{Context, Owner, Designer, Builder, Out-of-context}

ISO\CEN FDIS 19439: Model Phase

{Domain, Concepts, Requirements, Design, Implementation, Operation, Decommission}

ISO 15288: Process Group


{Agreement, Enterprise, Project, Technical}

C4ISR: Guidance

{Focus, Scope, Characterize, Determine, Build, Use}

### Recursive refinement





#### ICEIMT'04

# Views are important

- For communication and analysis
- Examples:
  - ISO\CEN FDIS 19439: View

{Function, Information, Resource, Organization}

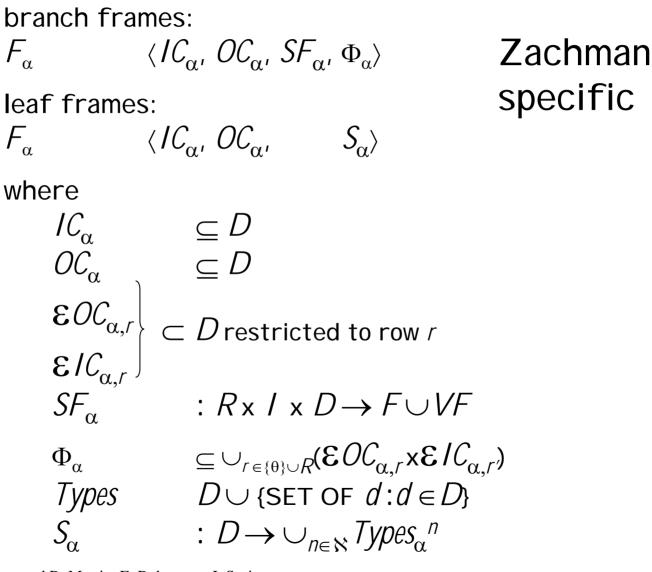
- C4I SR: View

{Operational, Systems, Technical}

- C4ISR: Integration

{National, Theater, CJTF, Tactical}

A static collection of views is insufficient.
 I SO 15704 Amendment 1: Economic View


# **Toward Formalization**

Range Sources Principles Formalization

- Structure:
  - both tree (decomposition) and grid (ordinant)
  - frames and sub-frames
- Connections:
  - between frame components
  - respects purposive order
- Constraints:
  - model and instance
  - beyond structure and connection
- Views:
  - generalizes "view" in existing frameworks
  - defined on structure
  - attempts to carry forward connections and constraints

ICEIMT'04

#### Framework meta-meta model



#### ICEIMT'04

© Copyright 2004 All Rights Reserved R. Martin, E. Robertson, J. Springer

Range Sources Principles Formalization

# Toward Standardization

Range Sources Principles Formalization

- I SO TC184 SC5 WG1 and CEN TC310 WG1
  - IS 14258, IS 15704, FDIS 19439
- United States government
  - Federal Enterprise Architecture Framework
  - Enterprise Architecture Management Maturity Framework
- The Open Group Architecture Framework
- Academic & Commercial – PERA, GERAM, ARIS, Metis, ZIFA...

ICEIMT'04