A Comparison of Frameworks for Enterprise Architecture Modeling

Richard Martin Tinwisle Corporation Bloomington, Indiana

Edward Robertson
Computer Science Department
Indiana University

A Comparison of Frameworks for Enterprise Architecture Modeling

- Framework Principles Structure, Connections, Views, Constraints
- Usage Observations
 Prototypes, Time, Purpose
- Archetypes
 Zachman, ISO 15704, ISO/CEN 19439,
 ISO/IEC 15288
- Complements
 Prototypes, Purpose, Artifacts, Change

A containment structure

- context for model artifacts
- interconnections between models
- access to model components
- model fidelity and consistency

NOT a programming framework.

A space of one or more dimensions *meta-model:*

Arrangement

- Ordinant (label) Ordered, Unordered
- Decomposing (path)

Scale

- Scope (general to specific)
- Abstract (abstract to concrete)
- Detail (coarse to fine)

Connections

Principles
Observations
Archetypes
Complements

Structural linkage along and among dimensions

Purpose

meta-model:

Ordered Decomposing Unordered

- Dependence
- Equivalence
- Transitivity

Fidelity, Consistency

Recursion

Different ways of looking at artifacts

meta-model:

- Filter along a dimension
- From one dimension to another
- Rearrange a framework derive a view
- Use selection and projection

Formal meta-model harder than mechanism

Evaluate conformance to a standard *meta-model:*

- Structure a place for everything of interest
- Connection within and between dimensions, typically binary
- View something must be placed to be seen, often used to define constraints
- Distinguish model from instance constraints
- Formal mechanisms within one model

Artifact Prototypes

- Frameworks are conceived with prototype artifacts in mind
- Framework artifacts are models we build both formally and informally
- Frameworks partition artifacts along conceptual categories (dimensions) with coordinates and paths
- Prototypes range over all enterprise aspects – automated, mechanical, human
- Framework expression is the realized model instances derived from prototype artifacts

Entities in Time

The characterization of a framework with respect to time informs us about the nature of change in the framework's context.

- Continuant identity continues to be recognizable over some extended interval of time
- Occurrent identity is not stable during any interval of time.

(see SOWA)

- Continuants are wholly present (i.e., all their parts are present) at any time they are present.
- Occurrents just extend in time by accumulating different temporal parts, so that, at any time they are present, they are only partially present.
- Continuants are entities that are in time. Lacking temporal parts all their parts flow with them.
- Occurrents are entities that happen in time. Their temporal parts are fixed in time.

(see Masolo, Borgo, Guarino, et. al.)

- Enterprise as product is continuant
- Enterprise as process is occurrent
- Purpose emerges from an ordered dependency
- Dependency is not necessarily chronology
- Purpose can be found in both continuant and occurrent enterprise descriptions
- Frameworks address continuant and occurrent purposes in enterprise description – but a single framework cannot do both!

Zachman Framework for Enterprise Architecture

Principles
Observations
Archetypes
Complements

ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

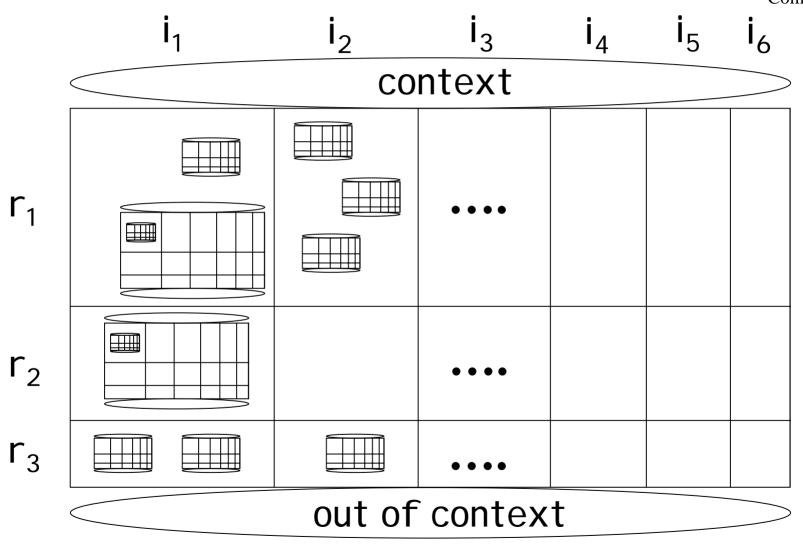
	DATA	What	FUNCTION	How	NETWORK	Where	PEOPLE	Who	TIME	When	MOTIVATIO N	Why	
SCOPE (CONTEXTUAL)	List of Things Importan to the Business	t	List of Processes the Business Performs		List of Locations in the Business Oper		List of Organizations Important to the Busin	ess	List of Events to the Busine	s Gignificant	List of Business Go	a ls/S tra t	S C OPE (C ONTEXTUAL)
Planner	ENTITY = Class of Business Thing		Function = Class of Business Process		Node = Major Bus Location	iness	People = Major Orga	nizations	Time = Major	Business Event	Ends/Means=Major E Critical Success Fact		Planner
ENTERPRISE MODEL (CONCEPTUAL)	e.g. Semantic Model		e.g. Business Process	Model	e.g. Logistics Netv	vork	e.g. Work Flow Mode	<u>-</u>	e.g. Master S	chedule	e.g. Business Plan	2	ENTERPRISE MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Reln = Business Relation	onship	Proc. = Business Proc I/O = Business Resour		Node = Business L Link = Business Lin		People = Organization Work = Work Produc		Time = Busine Cycle = Busin		End = Business Obj Means = Business S		Owne
S YS TEM MODEL (LOGICAL)	e.g. Logical Data Mode	·1	e.g. "Application Archit	te cture "	e.g. "Distributed S Architecture		e.g. Human Interface Archite		e.g. Processi	ng Structure	e.g., Business Rule M	fodel	S YS TEM MODEL (LOGICAL)
Designer	Ent = Data Entity Reln = Data Relationsh	ıip	Proc .= Application Fu I/O = User Views	ınction	Node = I/S Function (Processor Storage Link = Line Charac	e. etc)	People = Role Work = De liverable		Time = Syste	m Event cessing Cycle	End = Structural As Means = Action Ass		Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Mod	le I	e.g. "System Design"		e.g. "System Archi	tecture"	e.g. Presentation Arc	hitecture	e.g. Control S	Structure	e.g. Rule Design	2	TECHNOLOGY CONSTRAINED MODEL (PHYSICAL)
Builder	Ent = Segment/Table/e Reln = Pointer/Key/etc.		Proc.= Computer Func I/O = Screen/Device Fo		Node = Hardware Software Link = Line Specific		People = User Work = Screen Form	at	Time = Exec	oute ponent Cycle	End = Condition Means = Action		Builde
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition Ent = Field		e.g. "Program" Proc.= Language Stm	t	e.g. "Network Arc		e.g. Security Arch	ite cture	e.g. Timing		e.g. Rule Specification		DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT)
FUNCTIONING ENTERPRISE	Reln = Address e.g. DATA		I/O = Control Block e.g. FUNCTION		Link = Protocols e.g. NETWORK		Work = Job e.g. ORGANIZATION	ſ	e.g. SCHEDI		Means = Step e.g. STRATEGY		Contractor FUNCTIONING ENTERPRISE

Zachman Institute for Framework Advancement - (810) 231-0531

Copyright - John A. Zachman, Zachman International

(used with permission)

Principles Observations Archetypes Complements


Zachman Framework for Enterprise Architecture

(Information System version)

	What	How	Where	Who	When	Why
R	Entity - Relation	I/O - Process	Node - Link	People - Work	Time- Cycle	Ends - Means
Context	I mportant things	Proceses performed	Operating locations	People and groups	Events and cycles	Goals and strategies
Owner	Semantic model	B-process model	Logistics network	Work flow model	Master schedule	Business plan
Designer	Logical data model	' '	Distributed system	Human interface	Processing structure	Business rule model
Builder	Physical data model	System design	System arch.	Presenta- tion arch.	Control structure	Rule design
Out of context	Data definition	Program code	Network arch.	Security arch	Timing definition	Rule speci- fication

Zachman Recursion

Principles
Observations
Archetypes
Complements


Zachman Properties

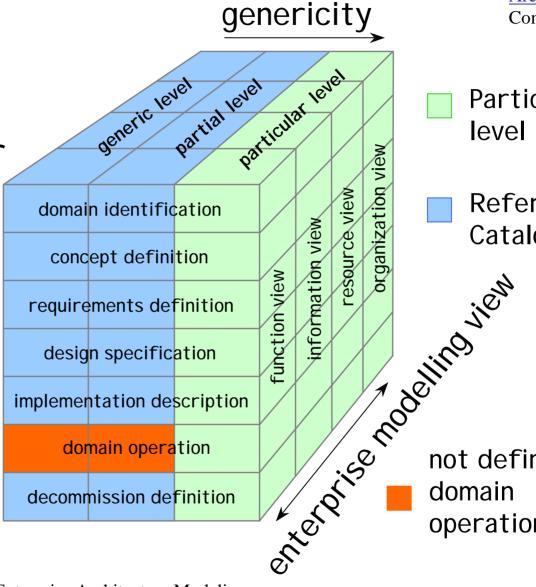
- Role dimension is ordinant, ordered, and purposive
- Purposive dimension is timeless
- Interrogative dimension is ordinant and unordered
- Primitive model contents facilitate complex model composition
- Recursive decomposition (frameworks nested in frameworks)

ISO 15704: Annex A - GERAM

Principles
Observations
Archetypes
Complements

Generalised Enterprise Reference Architecture and Methodology

A Comparison of Frameworks for Enterprise Architecture Modeling


ISO/CEN FDIS 19439

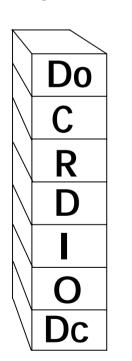
Principles Observations Archetypes Complements

CIM Systems Integration:

Framework for

Enterprise Modelling

Particular leve


Reference Catalog

not defined at operation phase

model phase

enterprise

Model - the purposive ordinant dimension ordered by coordinates corresponding to the phases of the enterprise model life-cycle.

Enterprise model phase:

- **Domain** identification
- Concept definition
- Requirements definition
- **Design** specification
- Implementation description
- domain Operation
- **Decommission** definition

Identify

Elaborate

Use

Emphasize model development process for process oriented modeling.

19439 - View Dimension

Principles
Observations
Archetypes
Complements

View – an unordered ordinant dimension with pre-defined or user selected coordinates that partition facts in the integrated model relevant to particular interests and context.

Enterprise modelling view:

- **Function** the system behavior, mutual dependencies, and influence of elements during function execution
- **Information** the material and information used and produced in the course of operations
- **Resource** capabilities of people and technological components
- **Organization** authority and decision-making responsibility during operations

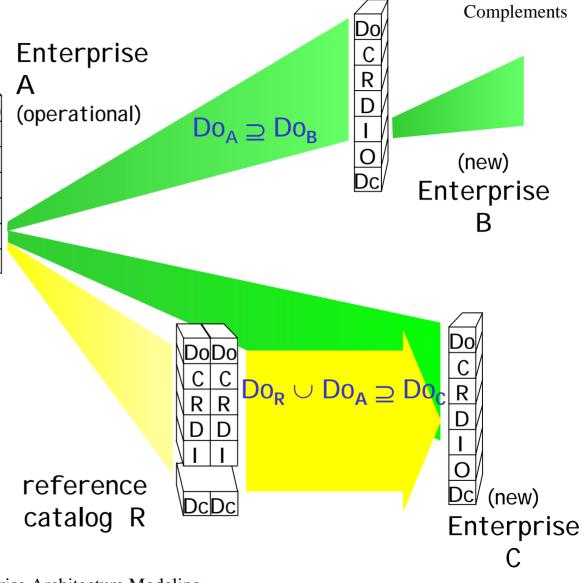
19439 - Genericity Dimension

Principles
Observations
Archetypes
Complements

Genericity – an ordered ordinant dimension that reflects 19439 as a "standard" framework.

Enterprise genericity level:

- Generic
- reusable modeling language constructs


Partial

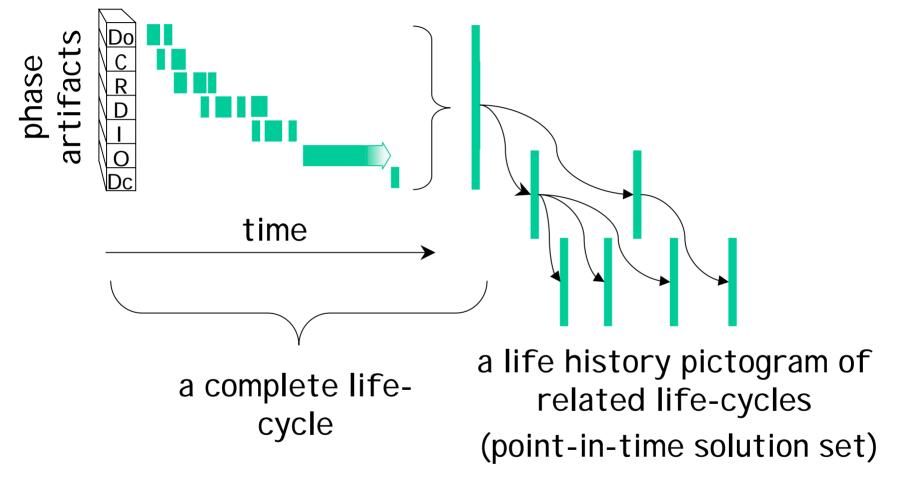
 prototype models of industry segment or industrial activity Reference catalog

 Particular – models of a particular enterprise domain

19439 - Recursion

Enterprise operations can model new enterprises either from its own particular models or using reference constructs and partial models.

A Comparison of Frameworks for Enterprise Architecture Modeling © Copyright 2003 by R. Martin and E. Robertson


20

Principles

Observations Archetypes

19439 - Life History

Principles
Observations
Archetypes
Complements

Adapted from P. Bernus, Griffith University, Australia

ISO/IEC 15288 Systems engineering – System life cycle processes

- Common process framework covering life cycle of man-made systems...spans conception of ideas through to retirement
- For acquiring and supplying systems
- Assess and improve life cycle processes
- Comprehensive set from which an organization can construct system life cycle models
- Can be applied at any level of system structure and throughout life cycle

15288 - Structure

- A degenerative case where framework structure is trivial but has many constraints that govern instances, e.g.,
 - Modularity maximal cohesiveness of the functions of a process and minimal coupling among processes.
 - Ownership a process is associated with a responsibility.
 - **Properties** the purposes, outcomes and activities for a process

15288 - Dimensions

Process Group – a hierarchic arrangement where enterprise processes manage project processes composed of technology processes all mediated by agreement processes

Life cycle - minimal normative requirement

"A life cycle model that is comprised of stages shall be established...The purpose and outcomes shall be defined for each stage of the life cycle."

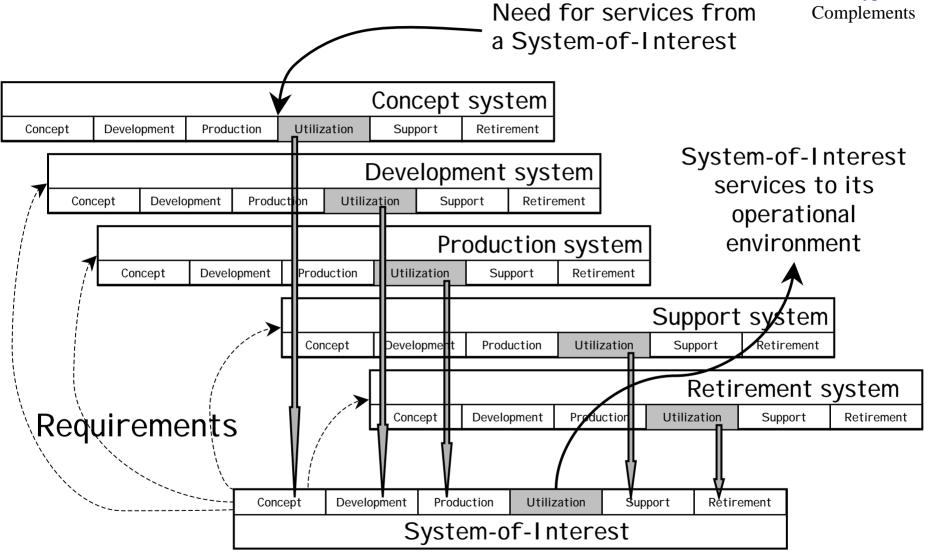
15288 - Process Groups

- Agreement define activities that establish agreement between internal/external entities
- Enterprise manage capability to acquire and supply through project initiation, support and control
- Project establish and evoke project plans, assess achievement, control execution
- Technical define the activities that enable functions to optimize benefits and reduce risks of technical decisions and actions

15288 - Process Hierarchy

Principles
Observations
Archetypes
Complements

Enterprise Environment Mgmt	Sy	System Life Cycle Processes Mgmt				
Investment Mgmt Resource	Mgmt	Quality Mgmt	< 11p, 21o, 34a >			
Project Planning Project Asse	ssment	Project Control	Decision-making			
Risk Mgmt Configuration Mgn	nt Inf	ormation Mgmt	< 16p, 35o, 61a >			
Stakeholder		Validation	Operation			
Requirements Definition		Transition	Maintenance			
Requirements Analysis	V	erification				
Architectural Design	Inte	egration	Disposal			
I mplem	< 34p, 53o, 96a >					


15288 - Life Cycle

Informative guidance for life cycle stages

15288 Stage	Concept	←	Domain Concept	19439 Phase			
	Development	←	Requirement Design	t			
	Production	→ Implementation					
Utilization Support			Operation				
	Retirement	\longleftrightarrow	Decommissio	n			

15288 - Recursion

Principles
Observations
Archetypes

Archetype Dimension Summary

Principles
Observations
Archetypes
Complements

Zachman -

Role {Context, Owner, Designer, Builder, Out-of-context} Interrogative {What, How, Where, Who, When, Why}

ISO\CEN FDIS 19439 -

Model (Domain, Concepts, Requirements, Design, Implementation, Operation, Decommission) View (Function, Information, Resource, Organization) Genericity (Generic, Partial, Particular)

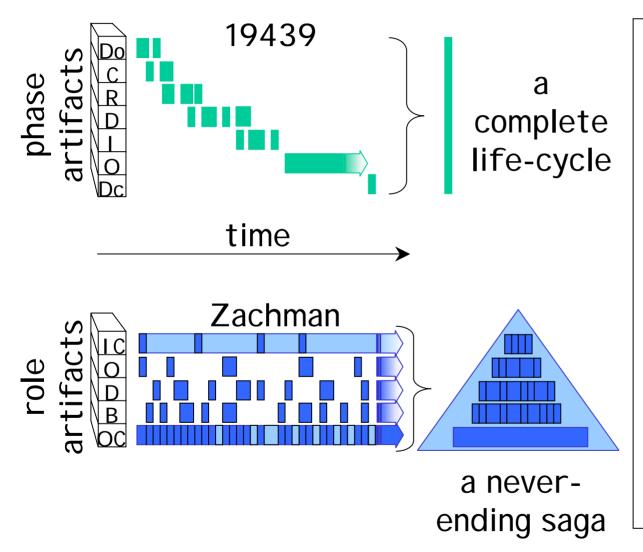
ISO 15288 -

Process Group (Agreement, Enterprise, Project, Technical)

- Zachman interrogative models {entityrelationship, input-process-output, node-link, people-work, time-cycle, ends-means}
- Zachman cell models {Semantic Model, System Design, Control Structure, Business Plan, etc.}
- 19439 constructs (domain, business process, enterprise activity, event, enterprise object, resource, capability, decision centre, etc.)
- 19439 partial models (industry sector, company size, national variation, etc.)
- 15288 process definitions { 25 processes consisting of 63 purposes, 123 outcomes, and 208 activities (in 33 pages of text)

Purposive Dimension

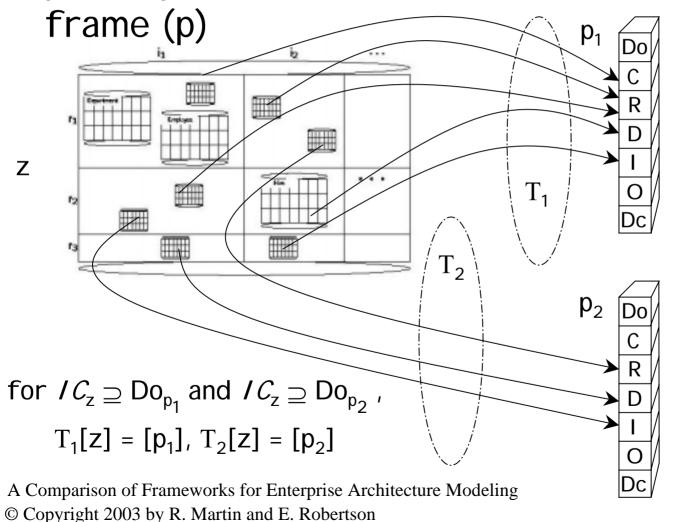
Principles
Observations
Archetypes
Complements


Zachman has a continuant purposive dimension (Role) and therefore serves well in an analytic resource and reference mode. It is always all there – either explicitly or implicitly.

19439 has an occurrent purposive dimension (Model Phase) and therefore serves well in a realization and operational mode. It provides the point-in-time solutions we use.

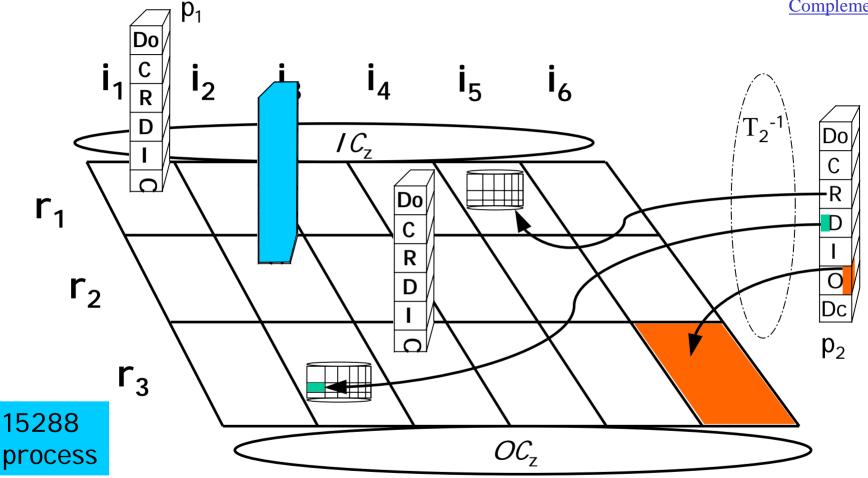
15288 has a decompositional purposive dimension (Process Group) with descriptive process artifacts suitable for use in Zachman or 19439.

Different Life History


Principles
Observations
Archetypes
Complements

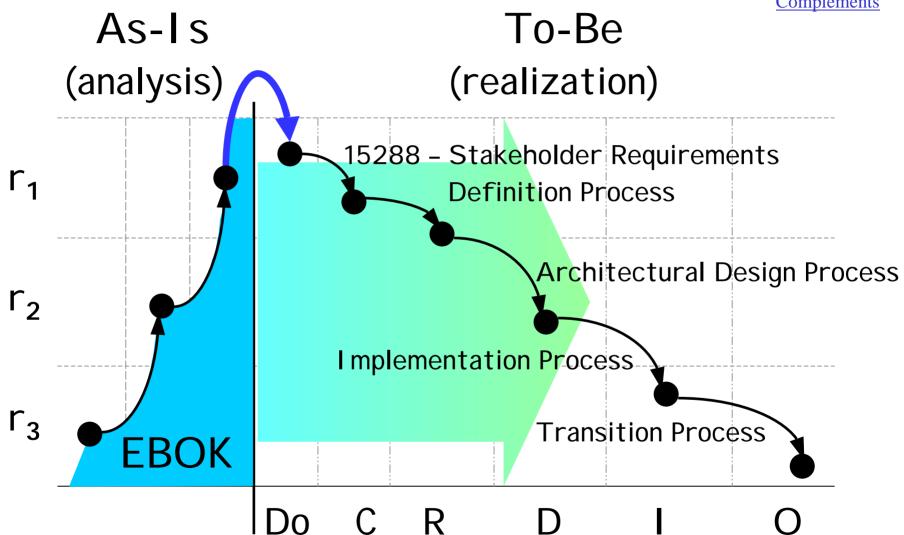
The appearance of artifacts in time imposes a temporal order on the purposive dimension of 19439, whereas the Zachman purposive dimension order is strictly the result of dependency among artifacts.

Taking a Snapshot


A Zachman continuant frame (z) can participate in an 19439 occurrent

15288 processes from "how" column map to p1 and p2 function views

Populating with Artifacts


Principles
Observations
Archetypes
Complements

for $\mathcal{C}_z\supseteq \mathsf{Do}_{p_1}$ and $\mathcal{C}_z\supseteq \mathsf{Do}_{p_2}$, $T_1^{-1}[p_1]\subseteq [z]$ and $T_2^{-1}[p_2]\subseteq [z]$

Principles
Observations
Archetypes
Complements

Managing Change

Principles
Observations
Archetypes
Complements

To respond to a change in the environment of **z**, say widget W for customer C requires a new process P, we use components of continuant **z** to instantiate the occurrent **p** that realizes the new process operation in one of two ways:

$$T_{W,C}[z] = [p_{W,C}]$$

$$M : z \rightarrow z'$$

$$T_{W,C}[z'] = [p'_{W,C}]$$

document the current P modify z for new process create new process realization

or

$$\begin{split} & T_{W,C}[\boldsymbol{z}] = [\boldsymbol{p}_{W,C}] \\ & R_{W,C}: \boldsymbol{p}_{W,C} \rightarrow \boldsymbol{p'}_{W,C} \\ & T^{\text{-1}}_{W,C}[\boldsymbol{p'}_{W,C}] \subseteq [\boldsymbol{z'}] \end{split}$$

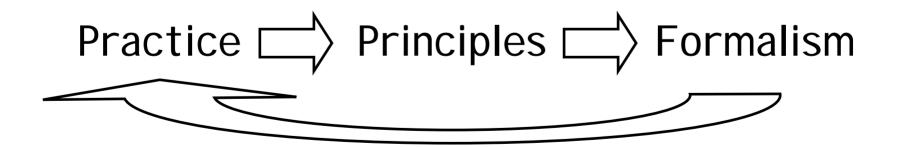
document the current P realize new process P' document new p in z

Principles Observations Archetypes Complements

Comparative Summary

Zachman is the most comprehnsive of the three presented.

Zachman holds primitive models while 19439 extracts those primitives and composes views.


Zachman provides a conceptual partitioning as a major focus whereas the other two focus on support for methodological approaches.

Approaching Frameworks

Principles
Observations
Archetypes
Complements

Goal is guidance for constructing and implementing frameworks.

Knowing the model space facilitates model reuse.

References

Principles Observations Archetypes Complements

- A. T. Bahill and C. Briggs. The Systems Engineering Started in the Middle Process: A Consensus of Systems Engineers and Project Managers. *Systems Engineering*, 4(2), 2001.
- C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, L. Schneider, The WonderWeb Library of Foundational Ontologies Preliminary Report, ISTC-CNR, Italy, 2002.
- International Organization for Standardization. ISO 15704:2000 *Industrial automation systems Requirements for enterprise-reference architectures and methodologies*. Geneva.
- International Organization for Standardization and European Committee for Standardization. ISO/CEN FDIS 19439 ISO/CEN parallel enquiry draft prEN ISO 19439 *Enterprise Integration Framework for Enterprise Modelling*. Brussels and Geneva, 2003.
- International Organization for Standardization and International Electrotechnical Commission. ISO/IEC 15288:2002 *Information Technology Life Cycle Management System Life Cycle Processes*. Geneva.
- International Organization for Standardization and International Electrotechnical Commission. PDTR 19760 Systems Engineering – Guide for ISO/IEC 15288 (System Life Cycle Processes). Geneva, 2002.
- J. A. Zachman. A framework for information systems architecture. IBM Systems Journal, 26(3), 1987
- J. F. Sowa. *Knowledge Representation: Logical, Philosophical, and Conceptual Foundations*, Brooks Cole Publishing., Pacific Grove, CA 2000.

 (also see http://www.jfsowa.com/ontology/toplevel.htm, September, 2003)
- J. F. Sowa and J. A. Zachman. Extending and formalizing the framework for information systems architecture. *IBM Systems Journal*, 31(3), 1992.
- R. Martin and E. Robertson. A Formal Enterprise Architecture Framework to Support Multi-model Analysis. Proceedings of the Fifth CAiSE\IFIP8.1 International Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, Stockholm, 2000.
- R. Martin and E. Robertson, Formalization of Multi-level Zachman Frameworks, 1999, http://www.cs.indiana.edu/Research/techreports/TR522.shtml