Science of Enterprise Modeling: An Informatic Perspective

Richard Martin Tinwisle Corporation Bloomington, Indiana Edward Robertson Computer Science Program Indiana University and Persistent Systems

General Principles

- 1. Models are formal artifacts developed and used by people.
- 2. A complexity tradeoff exists between modeling medium and model instances in that medium.
- 3. Naming serves as the bridge between the formal and the human.
- 4. Do not confuse meta-levels separate model and instance decompositions

1

- 5. Dependency is not chronology
- 6. Don't hide architecture in methodology.

Framework Principles

- 7. Frameworks organize artifacts to facilitate understanding.
- 8. To improve quality, distinguish structure from connectivity.
- 9. Separate policy from mechanism.
- 10. Both grid (ordinant) and tree (decomposition) structures appear in models.
- 11. Scale dimensions include: abstractness (abstract to concrete), scope (general to special) and refinement (coarse to fine).

Framework Principles

- 12. Within a framework, use of components are driven along one ordered dimension.
- 13. Along this ordered dimension, all prior context is relevant.
- 14. Refinement is recursive.
- 15. Connections can be of arbitrary arity.
- 16. Views are important in standards and methodologies.
- 17. Views are used both to "see" contents and to "create" contents.
- 18. Separate model and instance constraints.

3

Meta Process Principles

- 19. Framework are developed by transformations.
- 20. Transformations include:
 - Projection
 - Instantiation
 - > Refinement
 - Specialization
 - Derivation
 - Linking

21. Transformation use depends upon stakeholders, meta-pahse, context,...

© Copyright 2010 All Rights Reserved R. Martin and E. Robertson

Science of Enterprise Modeling: An Informatic Perspective

Two structural aspects

Three aspects of scale

- · Abstractness, scope, and refinement
- Examples of dimensional independence:
 - E-R diagrams are abstract but have rich refinement when fully populated.
 - 19439 Genericity contains constructs for use along a generalization gradient with a range of phase abstractions.
 - Zachman interrogative proto-types are abstract with concrete model contents.
 - DoDAF views span operational abstractions with technical refinement.

Scope Dimensions

© Copyright 2010 All Rights Reserved R. Martin and E. Robertson

Science of Enterprise Modeling: An Informatic Perspective

Zachman Framework for Enterprise Architecture

ENTERPRISE ARCHITECTURE - A FRAMEWORK [™]

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION Why	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Oroanizations Important to the Business	I ist of Events Significant to the Business	List of Business Goals/Strat	SCOPE (CONTEXTUAL)
Planner	FNTITY = Class of Business Thing	Function = Class of Business Process	Node = Major Business Location	People = Major Organizations	Time = Major Business Event	Ends/Means=Major Bus. Goal/ Critical Success Factor	Planner
ENTERPRISE MODEL (CONCEPTUAL)	e.g. Semantic Model	e.g. Business Process Model	e.g. Logistics Network	e.g. Work Flow Model	e.g. Master Schedule	e.g. Business Plan	ENTERPRISE MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Reln = Business Relationship	Proc. = Business Process I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Model	e.g. "Application Architecture"	e.g. "Distributed System Architecture"	e.g. Human Interface Architecture	e.g. Processing Structure	e.g., Business Rule Model	SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Reln = Data Relationship	Proc .= Application Function I/O = User Views	(Processor, Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event	End = Structural Assertion Means =Action Assertion	Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Model	e.g. "System Design"	e.g. "System Architecture"	e.g. Presentation Architecture	e.g. Control Structure	e.g. Rule Design	TECHNOLOGY CONSTRAINED MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Reln = Pointer/Key/etc.	Proc.= Computer Function I/O = Screen/Device Formats	Node = Hardware/System Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Means = Action	Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub-	e.g. Data Definition	e.g. "Program"	e.g. "Network Architecture"	e.g. Security Architecture	e.g. Timing Definition	e.g. Rule Specification	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT) Sub-
	Rein = Address	I/O = Control Block	Link = Protocols	Work = Job	Urme = Interrupt Cycle = Machine Cycle	Means = Step	Contractor FUNCTIONING
ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	ENTERPRISE

Zachman Institute for Framework Advancement - (810) 231-0531

Copyright - John A. Zachman, Zachman International

Interrogatives

R

0

e

S

(used with permission)

Aspects of Formalization

- Structure:
 - both tree (decomposition) and grid (ordinant)
 - frames and sub-frames
- Connections:
 - between frame components
 - respects purposive order
- Constraints:
 - model and instance
 - beyond structure and connection
- Views:
 - generalizes "view" in existing frameworks
 - defined on structure
 - attempts to carry forward connections and constraints

Zachman meta-meta model

 $\mathcal{F}_{\alpha} \qquad \langle IC_{\alpha}, OC_{\alpha}, S\mathcal{F}_{\alpha}, \Phi_{\alpha} \rangle$ leaf frames: $\mathcal{F}_{\alpha} \qquad \langle IC_{\alpha}, OC_{\alpha}, S_{\alpha} \rangle$ where $IC_{\alpha} \subseteq \mathcal{D}$ $OC_{\alpha} \subseteq \mathcal{D}$ $\begin{array}{c} \mathcal{E}OC_{\alpha,r} \\ \mathcal{E}IC_{\alpha,r} \\ \mathcal{S}F_{\alpha} \end{array} \end{array} \subset \mathcal{D} \text{ restricted to row } r \\ \vdots \mathcal{R} \times I \times \mathcal{D} \to \mathcal{F} \cup \mathcal{V}\mathcal{F} \end{array}$ $\Phi_{\alpha} \subseteq \bigcup_{r \in \{\theta\} \cup \mathcal{R}} (\mathcal{E}OC_{\alpha,r} \times \mathcal{E}IC_{\alpha,r'})$ Types $D \cup \{\text{SET OF } d : d \in D\}$ $S_{\alpha} : \mathcal{D} \to \bigcup_{n \in \mathcal{N}} \mathcal{T}ypes_{\alpha}^{n}$

© Copyright 2010 All Rights Reserved R. Martin and E. Robertson

Science of Enterprise Modeling: An Informatic Perspective

11

Aspects in Zachman model

- Structure:
 - ordinant: εOC , εIC
 - tree: SF
- Connections:
 - **-** Φ
- Constraints:
 - predicates using defined constructs
- Views:
 - sets satisfying predicates

Abbreviations

- Bridge from formalism to human use, providing
 - familiarity
 - uniformity
 - structure
- A single name \mathcal{N} can abbreviate
 - a path: $\mathcal{N} \rightarrow \langle r, I, d \rangle \langle r, I, d \rangle$
 - R x I cell coordinates: $\mathcal{N} \rightarrow <\!\!r,$ I , . >
 - a path template with multiple substitutions: $\mathcal{N} \rightarrow \langle r, I, . \rangle \langle r, I, . \rangle$
- Use to shorten complicated paths

Transformations

- Projection
 - broadly applied math notion
- Instantiation
 - only applies to abstraction
- Refinement
 - decomposition may be recursive for complicated objects
- Specialization
 - adds attributes
- Derivation
 - domain-specific transforming concept
- Linking
 - graph-like edges

© Copyright 2010 All Rights Reserved R. Martin and E. Robertson

From the set of architectural models, select a sub-set that is useful to a set of tasks during a life cycle phase.

Instantiation

© Copyright 2010 All Rights Reserved R. Martin and E. Robertson

Science of Enterprise Modeling: An Informatic Perspective

Refinement

 Refine an architectural model by addition of significantly more detail to ensure its use for a task during the life

Linking

 Take elements from different architectural models to satisfy data or decision needs for a task during the life cycle phase.

