# Views in the Enterprise Domain

Richard Martin Tinwisle Corporation Bloomington, Indiana Edward Robertson
Computer Science/Informatics
Indiana University



# Background: Our Motivations

- understand use of views in Enterprise Architecture Frameworks (EAF example follows) and related standards
- facilitate formalization & implementation
- manage confusion caused by multiple views of "views"

# Background: Our Experience

- developing and teaching about information systems
- formal, top-down orientation
  - "Nothing is as practical as a good theory."
  - EAF organizes concepts, models, & activities
- involvement in International Standards yielding EAF for industrial processes

#### ENTERPRISE ARCHITECTURE - A FRAMEWORK ™

|                                              | DATA Who                                             | t FUNCTION How                                       | NETWORK Where                                                                   | PEOPLE Who                                         | TIME When                                       | MOTIVATION Why                                         |                                |
|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------|
| SCOPE<br>(CONTEXTUAL)                        | List of Things Important to the Business             | List of Processes the<br>Business Performs           | List of Locations in which the Business Operates                                | List of Organizations<br>Important to the Business | List of Events Significant to the Business      | List of Business Goals/Strat                           | SCOPE<br>(CONTEXTUAL)          |
|                                              |                                                      |                                                      |                                                                                 |                                                    |                                                 |                                                        |                                |
| Planner                                      | ENTITY = Class of<br>Business Thing                  | Function = Class of<br>Business Process              | Node = Major Business<br>Location                                               | People = Major Organizations                       | Time = Major Business Event                     | Ends/Means=Major Bus. Goal/<br>Critical Success Factor | Planner                        |
| ENTERPRISE                                   | e.g. Semantic Model                                  | e.g. Business Process Model                          | e.g. Logistics Network                                                          | e.g. Work Flow Model                               | e.g. Master Schedule                            | e.g. Business Plan                                     | ENTERPRISE                     |
| MODEL<br>(CONCEPTUAL)                        |                                                      | -                                                    |                                                                                 | <u> </u>                                           |                                                 | •                                                      | MODEL<br>(CONCEPTUAL)          |
| Owner                                        | Ent = Business Entity<br>Reln = Business Relationshi | Proc. = Business Process I/O = Business Resources    | Node = Business Location<br>Link = Business Linkage                             | People = Organization Unit<br>Work = Work Product  | Time = Business Event<br>Cycle = Business Cycle | End = Business Objective<br>Means = Business Strategy  | Owner                          |
| SYSTEM                                       | e.g. Logical Data Model                              | e.g. "Application Architecture"                      | e.g. "Distributed System<br>Architecture"                                       | e.g. Human Interface<br>Architecture               | e.g. Processing Structure                       | e.g., Business Rule Model                              | SYSTEM                         |
| MODEL<br>(LOGICAL)                           |                                                      | <b>—</b>                                             |                                                                                 | <u> </u>                                           |                                                 | 00000                                                  | MODEL<br>(LOGICAL)             |
| Designer                                     | Ent = Data Entity<br>Reln = Data Relationship        | Proc .= Application Function I/O = User Views        | Node = I/S Function<br>(Processor, Storage, etc)<br>Link = Line Characteristics | People = Role<br>Work = Deliverable                | Time = System Event                             | End = Structural Assertion Means = Action Assertion    | Designer                       |
| TECHNOLOGY                                   | e.g. Physical Data Model                             | e.g. "System Design"                                 | e.g. "System Architecture"                                                      | e.g. Presentation Architecture                     | e.g. Control Structure                          | e.g. Rule Design                                       | TECHNOLOGY<br>CONSTRAINED      |
| MODEL<br>(PHYSICAL)                          |                                                      |                                                      |                                                                                 |                                                    |                                                 | •••••                                                  | MODEL<br>(PHYSICAL)            |
| Builder                                      | Ent = Segment/Table/etc. Reln = Pointer/Key/etc.     | Proc.= Computer Function I/O = Screen/Device Formats | Node = Hardware/System Software Link = Line Specifications                      | People = User Work = Screen Format                 | Time = Execute Cycle = Component Cycle          | End = Condition  Means = Action                        | Builder                        |
| DETAILED                                     | e.g. Data Definition                                 | e.g. "Program"                                       | e.g. "Network Architecture"                                                     | e.g. Security Architecture                         | e.g. Timing Definition                          | e.g. Rule Specification                                | DETAILED<br>REPRESEN-          |
| REPRESEN-<br>TATIONS<br>(OUT-OF-<br>CONTEXT) |                                                      |                                                      |                                                                                 |                                                    |                                                 |                                                        | TATIONS<br>(OUT-OF<br>CONTEXT) |
| Contractor                                   | Ent = Field<br>Reln = Address                        | Proc.= Language Stmt<br>I/O = Control Block          | Node = Addresses<br>Link = Protocols                                            | People = Identity<br>Work = Job                    | Time = Interrupt<br>Cycle = iviaciiii1e Cycle   | End = Sub-condition<br>Means = Step                    | Sub-<br>Contractor             |
| FUNCTIONING<br>ENTERPRISE                    | e.g. DATA                                            | e.g. FUNCTION                                        | e.g. NETWORK                                                                    | e.g. ORGANIZATION                                  | e.g. SCHEDULE                                   | e.g. STRATEGY                                          | FUNCTIONING<br>ENTERPRISE      |

Zachman Institute for Framework Advancement - (810) 231-0531 Views in the Enterprise Domain

Copyright - John A. Zachman, Zachman International

# Goals for Studying Views

- explicit characterization for all facets of views and viewing
- accommodate wide range of views and view uses
- facilitate use of views in design
  - particularly with multiple parties
- formalisms suitable for application and implementation

## Reasons for Having Views

- accommodate multiple users
  - examining content
  - defining content
- expose content to enable interoperability
- mask apparent complexity
- provide focus
- enable modularity of process
- enable "need to know" restrictions
- move toward particular domain knowledge
- enable interoperation with larger knowledge sets

# Views in the Enterprise Domain Outline

- <u>Distinctions</u> in views and models
- Meta-levels and views
- <u>Usage</u> of views in standards
- Technology of views

### Sources of Confusion

- "view" and "model" both noun and verb
- different reasons for viewing
- "meta" matters

 in international standards, word translation is not one-to-one

### View and Model: nouns

- view and model have different intentions
  - model ≅ something constructed
  - view ≅ something derived, observed
- extension may be the same
- model (noun) is a special kind of view (noun) specified not by content or structure but rather by the medium (wood, plastic, paper, ER, DFD, UML, etc.) of its representation

### View and Model: verbs

- view (verb) is different than model (verb)
- view (verb) is to observe from the perspective of an individual
- model (verb) is to construct a model to overcome limited perspective of individual participants
- view (verb) is a process of interpreting a view (noun)
- model (verb) is a process of synthesis resulting in a model (noun)

# View and Viewpoint

- view is the observation
- viewpoint is observational perspective
  - makes features of a model more or less significant
- viewpoint is characterized by intent
  - concerns
  - responsibilities
  - some things must be believed to be seen
- viewpoints often associated with "roles"
- standards sometimes specify a view using a viewpoint



### User vs. Modeler Views

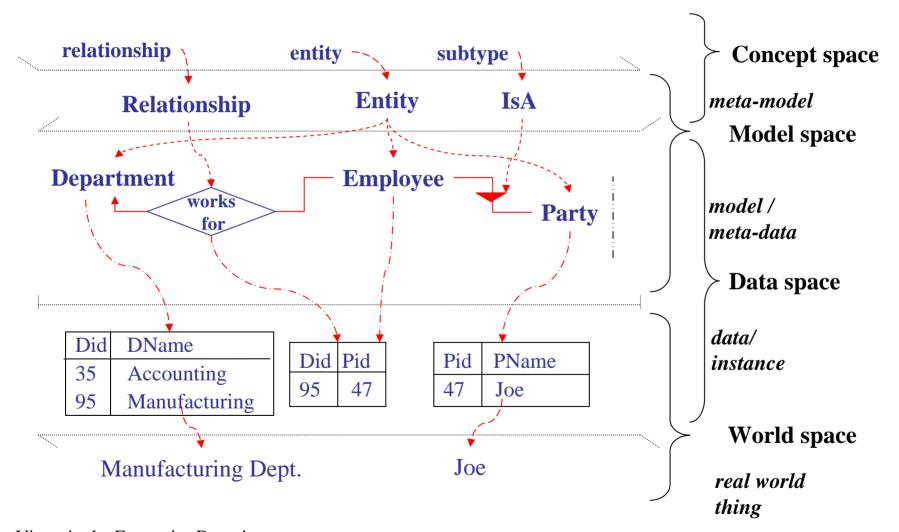
- user view (as is)
  - (noun) extracted content
  - (verb) specification of extraction process,
     e.g., RDB view, report financials
  - manifestation may be updatable
- modeler view (to be)
  - (noun) spectrum of usage viewpoints
  - always updatable and reversible
  - many meta-levels
- both may cross multiple models

# Necessity

### prescribed views

- fundamental perspectives for model generation
- domain specific
- often required by standard, contract, etc.
- possible views
  - arrangements of content
  - permissible
  - consistent

### Incidental distinctions

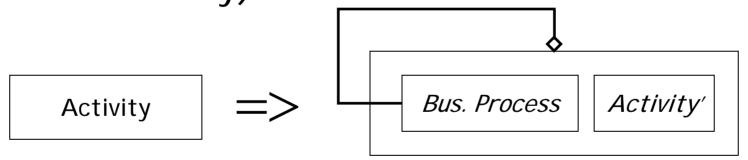

- single model view vs. multiple model view
- incomplete partial model (view) vs.
   complete parts of whole model (view)
- enterprise view (model) vs. constituent views (models) of enterprise
- view (model) driven by function vs. view (model) driven by information (process vs. data)
- model view vs. object view (CIMOSA)

# Scope of View

- view of whole vs. view of piece vs. ???
- ISO 14439: "view" is of whole
- ISO 14440: "view" is of piece
  - "object view"

# Meta-levels of design

Distinctions
<a href="Meta-levels">Meta-levels</a>
Usage
Technology




### Views and Meta-levels

- views exist at all meta-levels
  - prominent in IS
    - model level construct, populate
    - instance level subset, extract
- view of structure is meta with respect to view of data (e.g. SQL)
- view definition
  - typically at one meta-level
  - should propagate to lower meta-levels
- view update often crosses meta-levels

# View and context dependency

- 'activity' must be view dependent
  - your "assemble activity" (a step in process) may be my "assemble process" (a sequence of activities to accomplish your assemble activity)



 to achieve a consistent context a view may need to abstract

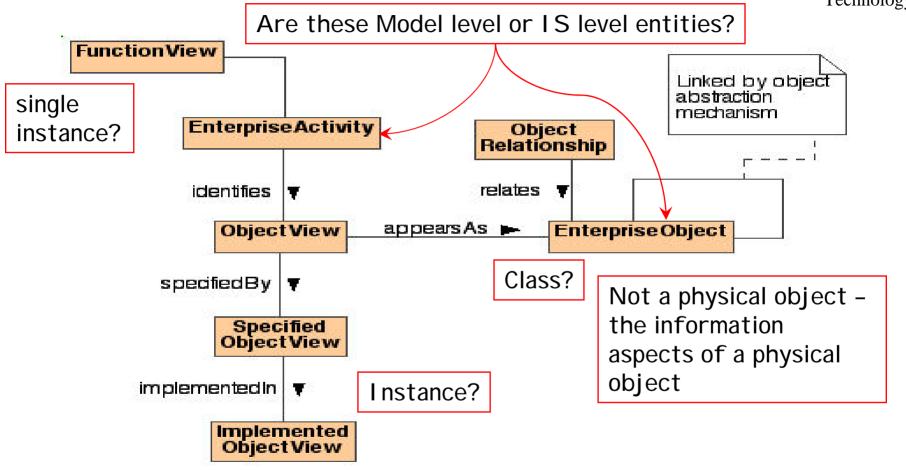
- view as image (noun)
- view generation as computation of image (verb)
- views to aid user understanding
- views as means for consistency, completeness and interoperability
- view of a model as expression of content
- view as a means to add new content

### View use

- view interoperability
   vs. model interoperability
- number of necessary views vs. enterprise scope
- what we can view from a model vs. what must change in a model to satisfy a view

### Relevant standards

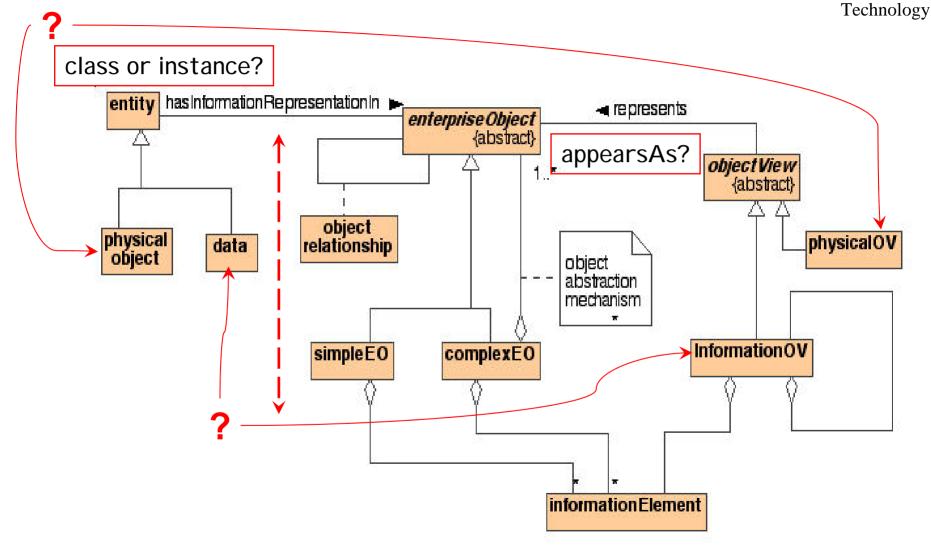
- ISO 14258: Concepts and Rules for Enterprise Models
- ISO 19439: Enterprise Integration Framework for Enterprise Modeling
- ISO 19440: Enterprise Integration Constructs for Enterprise Modeling
- IEEE 1471: Recommended Practice for Architectural Description of Software-Intensive Systems


### Uses of "View" in Standards

(don't expect consistency)

- prescribed modeler views (19439)
- "Object View" (19440)
  - not objects or views in OO sense
  - cannot view an Object View
  - instances are transient
  - instances shift representation
  - instances support processes
  - e.g.: shipping order → pick list

# CIMOSA "object view"


Distinctions Meta-levels <u>Usage</u> Technology



Not about model (noun) but rather about model (verb)

### Complex "object view"

Distinctions Meta-levels <u>Usage</u>



# Object view as observer pattern

Distinctions Meta-levels <u>Usage</u> Technology



# Technical aspects of view

- current standards (19439/19440 in particular) have no general principle for mapping modeling constructs in views
- if communication channels are used to assure consistency among views then any unified view is limited by those messages
- if ontology exists then it brokers the model and any views

# Technical aspects of view

- means to accommodate views without relaxing constraints
  - encapsulation barrier
  - dependency retention
- means to integrate multiple selective views
- means to examine dependency relationships, existence
- means to make a selective view address a particular perception

- content affected
- relationships affected
- model versions significant
- assessment of responsibility
- access control authorization
- cognitive space / domain examination
- threshold detection
- update constraints

### Views in RDBs

- views for reading ≈ manifest queries
- updating through a view has pitfalls
  - e.g. a class roster is a view but deleting a student from a class should not remove her from the university
- appropriate view updates leave the "complement" unchanged
- equivalently, appropriate updates are those reversible within the view
  - J. Lecthenbörger, PODS 03

### Views in trees/XML

- navigational access XPATH . . .
  - XQuery analog of SQL view
- results expressed as lists or tree transformations (XSLT)
- trees have order within paths; transformations rearrange that order and may confound navigation
- formal models: tree automata, attribute grammars

### Views in XML

- XML more than trees
  - non-branch associations (XPOI NTER)
- views along links many open issues
- "schema aware" rewriting may facilitate views
  - vs. "schema unaware"
- is there a comparable "navigation aware" notion that would facilitate updates?