Formalization of Zachman Frameworks

Richard Martin
Tinwisle Corporation
Bloomington IN

Edward Robertson

Computer Science Department

Indiana University

Copyright ©1999, Richard Martin and Edward Robertson

I keep six honest serving men (They taught me all I knew);

Their names are What and Why and When And How and Where and Who.

I send them over land and sea.

I send them east and west;

But after they have worked for me, I give them all a rest.

I let them rest from nine till five, For I am busy then,

As well as breakfast, lunch, and tea, For they are hungry men.

But different folk have different views, I know a person small—

She keeps ten million serving-men, Who get no rest at all!

She sends 'em abroad on her own affairs, From the second she opens her eyes—

One million Hows, two million Wheres, And seven million Whys!

Rudyard Kipling "The Elephant's Child" Just So Verses, 1902

Outline - Formalization of Zachman Frameworks

Prolog

Basic Formalism

EXCRUCIATING DETAILS

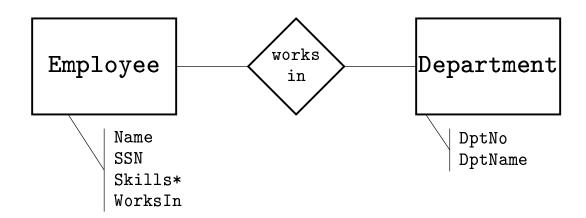
Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

Prolog

OTHER MODELS

Several models by others motivate our approach:


- Zachman's traditional framework architecture – merged with a view of data modeling process
- W. Smith's Meta-ER diagram
- Noriega & Kopko's "Framework use role classification"
- Zachman's "The total picture"

Principles

- Roles are ordered, interrogatives are not
- Entire preceding role is relevant for each cell of a frame
- Abstraction and detail are not opposite ends of a single spectrum
- Recursion is decomposition and successive refinement, not reoccurrence
- Multiple views are inherent and essential in system modeling and specification

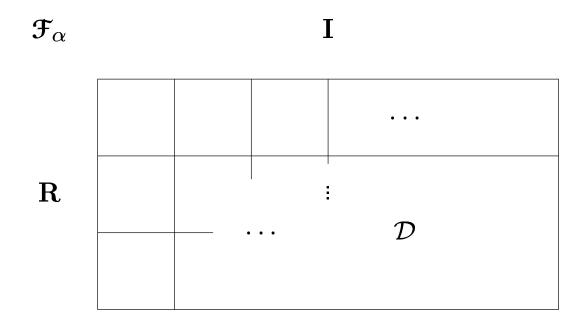
RUNNING EXAMPLE: AN ER MODEL

- ER model has a well-defined meta-model
- we will use a fragment of ER model for HR system

- We depend on everyone's familiarity as preparation for the example
- ER models are "row 1, column 1" (in our numbering)

Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY


Basic Formalism

Vocabulary

$$\mathbf{R}$$
 $\{\mathsf{r}_1,\cdots,\mathsf{r}_n\}$, a set of *roles*

$$\mathcal{D}$$
 a finite set, the descriptors

$$\mathfrak{F}_{lpha}$$
 a frame

Roles

R is ordered

R typically fixed by methodology

R specifies rows within a frame

examples of \mathbf{R} :

```
{ "conceptual", "logical", "physical" }

{ "owner", "designer", "builder" }

{ "enterprise", "system", "technology" }
```

 ${f R}$ is extended with two "contexts":

- ⊖ before (typically written "context")
- ⊕ after (typically "out of context")

extended R is therefore:

$$\{\ominus, \mathsf{r}_1, \cdots, \mathsf{r}_n, \oplus\}$$

Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

Interrogatives

I is <u>not</u> ordered

I typically fixed by methodology

I specifies columns within a frame

examples of I:

```
{ "what", "how", "where", "who",
    "when", "why"}

{ "data", "function", "network",
    "people", "time", "motivation"}

{ "things", "activities", "places", "roles",
    "events", "rules"}
```

Descriptors

 \mathcal{D} is unordered

 \mathcal{D} localized to application

 ${\cal D}$ captures "domain knowledge"

examples of \mathcal{D} :

```
{"Department", "Employee", "Hire", ...}

{"Accommodate Legacy", "Account", "Actor",

"Actual", "Address", "Analyze", "Arbiter",

"Architecture", "Architecture Aspect",

"Aspect Dependent", "Aspect Difference",

"Aspect Integration", "Asset",

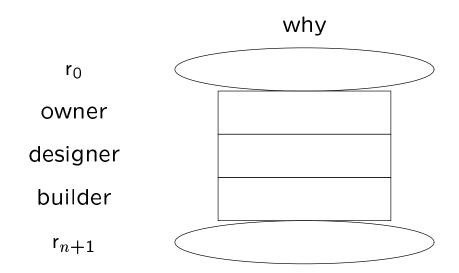
"Association Notation", "Attitude",

"Availability", "Behavior", ...}

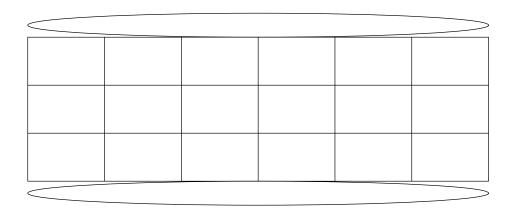
— IBM ESS terminology, 200+ terms
```

subsets of \mathcal{D} specify the "visible interface" of a frame \mathfrak{F}_{α} :

$$\mathcal{IC}_{lpha}$$
 is \mathfrak{F}_{lpha} 's input \mathcal{OC}_{lpha} is \mathfrak{F}_{lpha} 's output


Prolog Basic Formalism

EXCRUCIATING DETAILS


Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

A SINGLE COLUMN

A SINGLE FRAME

Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

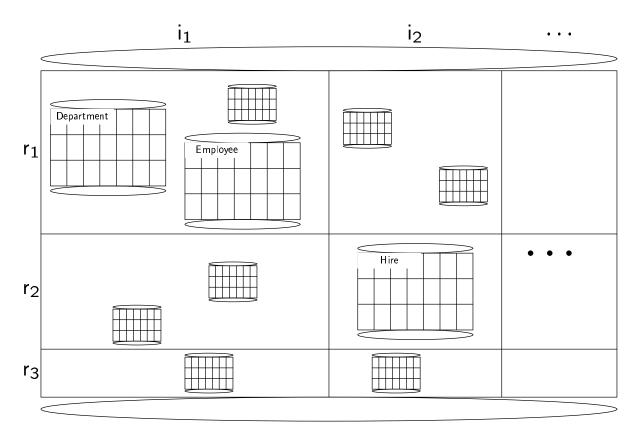
FRAMES AND FRAMEWORKS

A framework F is a finite set of frames

$$\mathfrak{F} = \{\mathfrak{F}_{\alpha} : \alpha \text{ is a "path"}\}$$

A frame \mathcal{F}_{α} is either

- a branch frame or
- a *leaf* frame

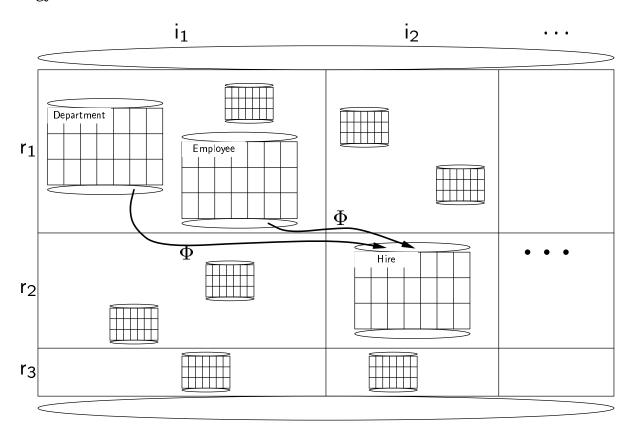

A "path" is typical of labeling any hierarchical structure, just as "USA.Illinois.Cook.Chicago" would label a governmental unit

ABBREVIATIONS, CONSTRAINTS & VIEWS

EXERCISE: IBM ESS METHODOLOGY

Branch Frame Structure

$\mathbf{R} \times \mathbf{I} \times \mathcal{D}$ indexes subframes


ullet typically ${f R}$ and ${f I}$ are implicit

Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

Branch Frame Interconnections

Φ_{α} connects subframes

- ullet Φ connects
 - o to next role
 - o from output to input

Abbreviations, Constraints & Views

EXERCISE: IBM ESS METHODOLOGY

LEAF FRAMES

"Hooks" for components from the modeled world

Only the interface of these components is specified

• mechanism is type signature

may connect to individuals or sets

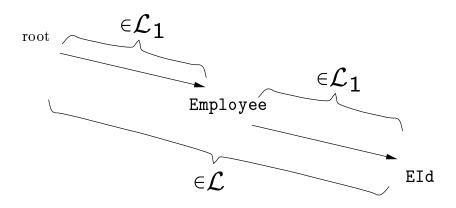
THE HEART OF THE META

- real data is from the real world
- the structure we impose on the real world is the model
- the methodology reflects the structure we impose on models, hence it is a meta-model
- the framework reflects the structure we impose on methodologies, hence it is a meta-meta-model

Abbreviations, Constraints & Views Exercise: IBM ESS Methodology

Labels and Paths

edge labels:


$$\mathcal{L}_1 \qquad \{\langle r, i, d \rangle : r \in \mathbf{R}, i \in \mathbf{I}, \& d \in \mathcal{D}\}$$

path labels:

$$\mathcal{L}$$
 defined by BNF $\mathcal{L}:=\epsilon|\mathcal{L}\,\mathcal{L}_1$

(ϵ denotes the empty path)

 $\mathcal{P}_{\mathcal{A}\mathcal{T}\mathcal{H}\mathcal{S}_{\mathcal{F}}}\{\alpha:\mathfrak{F}_{\alpha}\text{ is defined}\}$ for a framework \mathfrak{F}

ABBREVIATIONS, CONSTRAINTS & VIEWS EXERCISE: IBM ESS METHODOLOGY

FRAMES

branch frames:

$$\mathfrak{F}_{\alpha}$$
 $\langle \mathcal{IC}_{\alpha}, \mathcal{OC}_{\alpha}, \mathcal{SF}_{\alpha}, \Phi_{\alpha} \rangle$

leaf frames:

$$\mathfrak{F}_{lpha} \qquad \langle \mathcal{IC}_{lpha}, \mathcal{OC}_{lpha}, \qquad \mathfrak{S}_{lpha}
angle$$

where

$$\mathcal{IC}_{\alpha} \subseteq \mathcal{D}$$

$$\mathcal{OC}_{\alpha} \subseteq \mathcal{D}$$

$$\left. egin{array}{c} \mathcal{EOC}_{lpha,r} \\ \mathcal{EIC}_{lpha,r} \end{array}
ight\} \quad \subset \mathcal{D} \,\, ext{restricted to row} \,\, r$$

$$\mathcal{SF}_{\alpha}$$
 : $\mathbf{R} \times \mathbf{I} \times \mathcal{D} \to \mathfrak{F} \cup \mathfrak{VF}$

$$\Phi_{\alpha} \subseteq \bigcup_{r \in \{\Theta\} \cup \mathbf{R}} (\mathcal{EOC}_{\alpha,r} \times \mathcal{EIC}_{\alpha,r'})$$

$$Types$$
 $\mathcal{D} \cup \{ \texttt{SET OF } d : d \in \mathcal{D} \}$

$$S_{\alpha}$$
 : $\mathcal{D} \to \bigcup_{n \in \mathbb{N}} Types_{\alpha}^{n}$

EXERCISE: IBM ESS METHODOLOGY

ABBREVIATIONS, CONSTRAINTS & VIEWS ABBREVIATIONS

Goal: use abbreviations to facilitate formalism, providing

- o familiarity
- uniformity
- o structure
- ullet a single name ${\cal N}$ can abbreviate

$$\circ$$
 a path: $\mathcal{N} \to \langle r, i, d \rangle \langle r', i', d' \rangle$

$$\circ$$
 $\mathbf{R} imes \mathbf{I}$ cell coordinates: $\mathcal{N} o \langle r, i, \cdot
angle$

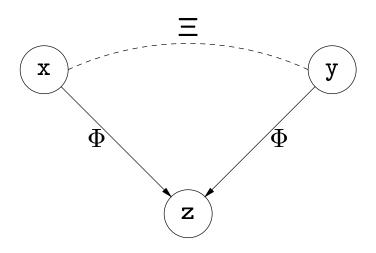
- \circ a path template with multiple substitutions: $\mathcal{N} \to \langle r, i, \cdot \rangle \langle r', i', \cdot \rangle$
- use to shorten complicated paths
- envision implementation with macro preprocessor

EXERCISE: IBM ESS METHODOLOGY

ABBREVIATIONS IN ER EXAMPLE

- ullet in top-level frame, $\langle r_1,i_1,\cdot
 angle$ subframe (or \langle conceptual, data, $\cdot
 angle$ subframe) is commonly called an "Entity" or "Relationship"
- ightarrow so saying "Entity abbreviates r_1, i_1 " means that "Entity.Department" abbreviates $\langle r_1, i_1,$ "Department" angle
 - ullet in $\langle r_1, i_1, \; \cdot \;
 angle$ frame, a $\langle r_1, i_1, \; \cdot \;
 angle$ subframe is commonly called an "Attribute"
- ightarrow so "Entity.Attribute includes Employee.SSN" means $\langle r_1,i_1,$ Employee $\rangle.\langle r_1,i_1,$ SSN \rangle is a valid path

CONSTRAINTS


Goal: use restrictions on formal relations $(\mathfrak{F}, \mathcal{SF}, \Phi, \cdots)$ to:

- insure consistency (interior)
- enforce business rules (leaves)
- analogous to foreign key constraints in RDB implementation
- abbreviations constrain legal path labels to provide a methodology's structure

CONSISTENCY CONSTRAINT EXAMPLE

Constraint: if Φ maps both x and y to z, then x and y are consistent

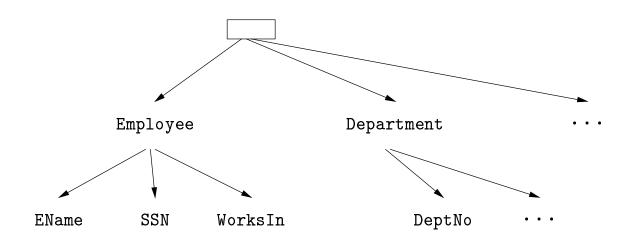
Enforce with new equivalence relationship \equiv

CONSTRAINTS IN ER EXAMPLE

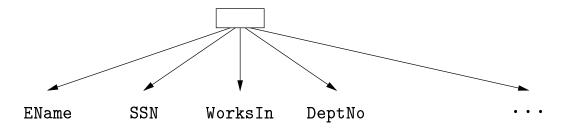
- multivalued attributes, such as Skill*, have proper implementation
- foreign key constraint, such as every employee works in a valid department
- → SET OF Employee.WorksIn.Value
 ⊆ SET OF Department.DptNo.Value

$V_{\rm IEWS}$

Goal: rearrange framework components in order to


- o focus on certain elements
- match different perspectives
- validate structure
- achieve this by rewriting path labels
 - o omit segments
 - rearrange segments
- full tree rewriting too powerful
- more structural than semantic
 - \circ difficult to carry along Φ

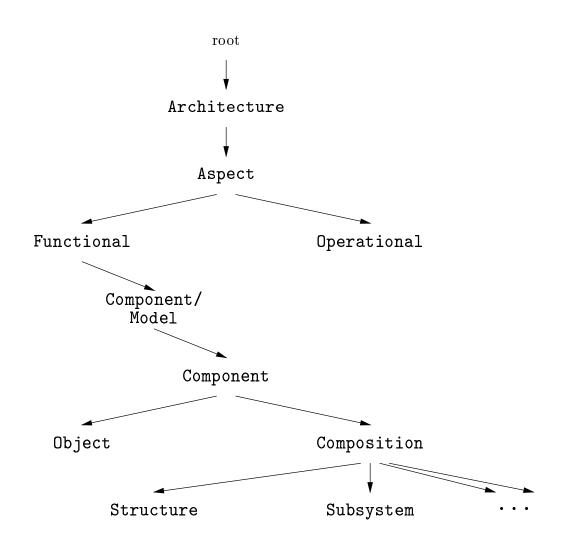
VIEWS IN ER EXAMPLE


Form data dictionary using rule

$$\langle r_1, i_1, X \rangle . \langle r_1, i_1, Y \rangle \Rightarrow \langle r_1, i_1, Y \rangle$$

SO

becomes



EXERCISE: IBM ESS METHODOLOGY
ESS BACKGROUND

Goal: validate formalism with application to a real model

- begin with IBM's Enterprise Solutions
 Structure (IBM Systems Journal, 1999)
- applied Doug McDavid's semantic analysis technique to obtain vocabulary
- mapped into our formalism

Fragment of ESS Meta-Hierarchy

Note: ${\bf R}$ and ${\bf I}$ indices omitted

ESS EQUIVALENCES FOR I

what \approx resource

how \approx behavior

where \approx location

who \approx delivery

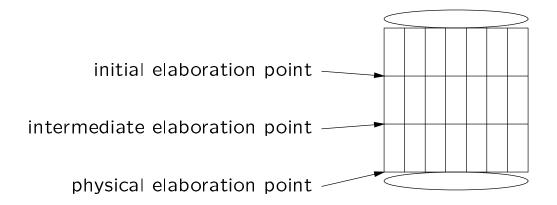
when \approx _____

why \approx drivers

VOCABULARY FOR ONE FRAME

Composition – ${f F}_{lpha}$

Dynamic_Behavior	Subsystem
Enablement	
Object_Interface	Grouping
Optimizing	Overlap
Templates	Platform_ Span
Component_ Interaction_ Diagram	UML_Deployment_ Diagram
-	Object_Interface Optimizing Templates Component_ Interaction_


```
 \begin{array}{l} \text{path } \alpha = \langle \text{conceptual, what, Architecture} \rangle. \\ & \langle \text{conceptual, what, Aspect} \rangle. \\ & \langle \text{logical, how, Functional} \rangle. \\ & \langle \text{logical, what, Component\_Model} \rangle. \\ & \langle \text{physical, what, Component} \rangle. \\ & \langle \text{logical, how, Composition} \rangle. \end{array}
```

Vocabulary for One Frame — continued

who	when	why
Collaborations Role_Player	Sequence	Use_Case Situation Purpose
Performing_ Component Requesting_ Component Workflow	Interactions Operation_ Sequence Task_Sequence	Interface_Use Service_Level Commitment
UML_Collaboration_ Diagram	UML_ Sequence_ Diagram	UML_ Scenario

ELABORATION POINTS

ESS makes heavy use of \mathcal{EOC} during modeling process

FUTURE WORK

- gain experience
- semantics
 - make use of Φ less awkward
- constraints
 - extend concepts to capture different flavors of frameworks
 - o more rigorous formal characterization
- views
 - formalize and investigate formal properties
 - better ways for handling ambiguities
- methodologies & toolkits

Technical report available at

http://www.cs.indiana.edu/database/Publications/TR522.html