Time Slide
00:00 0 – Title
00:25 1 – Outline

- Sampler: architectural representations
 - diverse styles
 - distinct subject matter
- Foundation: formalizing frameworks
 - architectural representation medium
 - rigorous mathematical treatment
- ISO/DIS 19439: framework standard for enterprise modeling
 - enactable models
 - manufacturing environment
- C4I SR: DOD enterprise framework initiative
 - achieve broad model interoperability
 - global service and support
- Compare Features:
 - distinguishing aspects
 - properties desirable for formalization
- Correspondence:
 - relationships among archetype
 - meta-models
 - instances

00:45 2 – Arch. Representations

- just 8 of many possibilities
 - top set showing variety
 - bottom set the presentation focus
- notice distinctive structural metaphors
 - indicative of architecture term use
 - pyramid, sphere, cube, wind chime, tower, grid

01:30 3 – FRAT

- one face for each system view
 - Function
 - Requirements
 - Answers system description
 - Test verification and validation
- architectural features
 - stratification with ordered levels
 - connection between levels
 - artifact frequency metaphorically, detail elaboration adds
 - depth
 - breadth to the system description

02:00 4 – ARC CMM

- spheres of influence for application domains
- application nodes arranged with respect to axial dimensions of significant interest
 - enterprise
 - business thru production
 - value chain
 - suppliers thru customers
 - lifecycle
 - design thru support

02:30 5 – Rockwell Collins

- 3 architectural dimensions
 - abstraction function, service, support
 - hierarchy system, subsystem, etc.
 - realization logical, physical, structural
 - 27 coordinate positions
- note variety of perspectives to accommodate with representation models

03:15 6 – PERA

- 9 phases in project elaboration
 - identification to dissolution
 - the focal dimension
- 2nd dimension is embedded
 - distinguished columns
 - blue depicting mechanized tasks
 - manufacturing equipment architecture
 - green human implemented tasks
 - human and organizational architecture
 - yellow depicting the automated tasks
 - information systems architecture

04:15 7 - GERA

- 8 phase lifecycle in 3 dimensions
 - slices of architecture (sound familiar?)
 - Preliminary & Detailed design
- a merging of PERA and CI MOSA (not shown)
- Instantiation dimension
 - reference architecture
 - generic constructs
 - partial models
 - particular models of an enterprise
- 4 views
 - Function, Information, Organization, Resource
 - necessary and sufficient for the manufacturing domain

05:15 8 – ISO/DIS 19439

- harmonization
 - ISO 15704 (GERA)
 - CEN ENV 40 003 European pre-standard
- 3 dimensions
 - model phase
 - modeling view
 - genericity
- note missing phase in reference catalog
- only particular models actually operate
- 1 of the 3 archetypes discussed

05:45 9 – Zachman

- our proto-typical framework
- early motivation for framework formalization
- note focus our attention
 - on rows distinguished as roles
 - owner, designer, builder
 - characterize human quality of an enterprise
- interrogatives are the considerations those humans manage
- 2nd of 3 archetypes discussed

06:15 10 – C4ISR V2.0

- C4ISR
 - no single graphic to depict its architectural organization of multiple dimensions
- framework specification now in use by largest single enterprise in the world
- became its own architectural metaphor
- figure depicts strong sense of inter-relationships among perspectives on the enterprise
- 3rd of 3 archetypes discussed

07:00 11 – Modeling principles

- move on to Foundation
- just say something about middle two
- model structure, as evidenced by the samples,
 - lot of variety
 - two structures dominate
- ordinant (often called a grid)
 - structural elements
 - few well defined classifications
 - ordered or unordered coordinate positions
 - like a Zachman role or interrogative
- decomposition (often called tree)
 - structural elements
 - result from addition of detail
 - part subpart component element breakdown
 - structural form
 - hierarchical
 - other directed graph
- distinguish scale dimensions
 - concept
 - abstract to concrete
 - scope
 - general to special
 - detail
 - coarse to fine

- example an ER model (with all attributes, relationships, constraints, etc.)
 - both abstract and finely detailed
 - furthermore
 - specific it models one enterprise
 - generic it models an entire industry segment

08:00 12 – Framework principles

- not policy,
 - does reflect an attitude concerning architecture structure
- John provided some critical insight
 - regarding ways to formalize frameworks
- interconnections
 - explicit and meaningful
 - don't want semantics revealed only by navigation
- important to keep names, symbols, labels, etc., in the proper structural context
 - e. g., row vs. decomposition
- an enterprise is a system with a purpose
- framework is a purposeful system representation
- ascribe purpose, e.g., Zachman role, to dimension
 - tells us about connections
 - within and
 - between dimensions
- e.g., in an ordered purposive dimension
 - all things of a coordinate position are relevant to its successor
- recursion always necessary structural mechanism
- iteration is a useful process mechanism
- some argue view generation is reason for framework modeling
- it should be possible to project same view from 2 frameworks with different purposive dimensions

10:00 13 – Meta-meta model

- structurally
 - 2 basic dimensional characteristics
 - recursion
- connections
 - explicit
 - require trace ability through orderings
 - i.e., preserve ordering
- view mechanisms
 - support more than fixed views
 - must respond to "need to know" situations

11:30 14 – Formal model

- recall principles about
 - modeling medium trade offs
 - artifacts are used by people
- unfortunately, mathematical precision can lose meaning for many
- formalized with relatively little mathematics it is all here on one slide
- this model concerns
 - structure and
 - connections
- constraints and views complicate the formalism considerably

12:00 15 – Entities in time

- new distinction for most of you
- arises from ontological considerations
 - of things in the enterprise
 - ways we articulate their distinction
- sometimes referred to as
 - 3D and 4D representations or
 - snap and span distinctions
- 3 pairs of statements about the nature of
 - continuants
 - wholly present all of their parts, past, present, and future
 - potentially incompatible properties at different times
 - occurrents
 - never all together each part is fixed in time and cannot change
 - parts don't have temporal identify
- consider that anatomy is continuant while physiology is occurrent
- not an easy distinction to comprehend
- useful in considering framework structure and use as we hope to show you
- use distinction at the meta-level of a framework and not at the level of model instances

14:00 16 – Critical aspects of Zachman

- role dimension coordinate positions
 - owner, designer, builder
 - ordered by dependency relationships
- interrogatives potentially related to each other
- John's repository through product slide of four nesting frameworks is a strong testament for the Framework's recursive properties
- simple model composition
 - attractive
 - but difficult to achieve in practice
 - we tend to build views first rather than last
- and lastly, every role all of the time
- artifact timing is in the when column and not in the role dimension

15:00 17 – ISO/DIS 19439 History

- genesis in European computer integrated manufacturing
- growing to international effort in the 1990's
 - resulting in ISO 15704
- I became involved through ISO revision of European pre-standard 40 003 to comply with 15704 and extend the reach of standardization
- should complete adoption in mid-2003
- note scope with
 - computer-enactable models
 - model-based operation, monitoring and control
 - i.e., model based automation

16:00 17a – ISO/DIS 19439 graphic depiction

18 - ISO/DIS 19439 Model dimension

- I'll use the graphic depiction you follow handout
- 1st is Model- the purposive ordinant ordered dimension of lifecycle phases
- purpose is development process
 - artifacts are successively created
 - during lifecycle of enterprise
- meaning of enterprise tends toward
 - project or undertaking
 - rather than entire business organization
 - systematic purposeful activity fits well
- begin by identifying a domain,
 - boundary,
 - objectives,
 - basic functionality and
 - capabilities
 - in end-user terms
- then elaborate the domain with
 - business concepts to enable objectives,
 - things like
 - mission,
 - vision,
 - strategies,
 - operations,
 - policies,

- necessary to achieve functionality and capabilities
- still very end-user oriented
- follow with definitions of
 - business processes,
 - enterprise activities, and
 - inputs and outputs required
 - enterprise engineers dominate development
- satisfy requirements by specifying
 - detailed manner in which
 - operations are performed including
 - tasks,
 - information, and
 - resources
 - together with management and control functions
- build to the design specification
 - validate and verify
 - then release to production operation
- monitor and control operation execution
- and finally
 - redesign, recycle, preserve, transfer, disband, disassemble, or
 - otherwise dispose of the operational system at the end of its useful life
- note Model phase arrow has two heads
 - reflects iteration as artifacts are resolved

17:30 19 - ISO/DIS 19439 View dimension

- view dimension as unordered and ordinant
 - unordered
 - dependencies between view artifacts abound
 - even though expected development pattern
 - from Function through
 - Information and Resource
 - to Organization
- four views considered necessary and sufficient by the manufacturing user community involved in this standard's promulgation
- e.g., a projection from the function view of the management and control system is precisely the functional model of the enterprise domain's decision system

18:30 20 - ISO/DIS 19439 Genericity dimension

- 3rd dimension is ordinate known as Genericity
- to left is the generic level
 - primitive constructs,
 - encoded as templates,
 - primitives of enterprise models
- in middle are partial models
 - e.g., logistic services and schedulers,
 - formed from generic constructs
- generic and partial
 - termed the reference catalog
 - have no operational phase
 - incomplete dimension
 - operations are discontinuous
 - reference catalog embodies the "standards" provided by ISO/DIS 19439 compliance
- on right models developed for a particular enterprise
 - including those that are operational
- generic and partial levels have wide detail range
 - from programming language primitives
 - through an unconfigured SAP installation
- expect a well defined set of generic constructs suitable for the manufacturing and process control sectors will emerge
- initially, partial models will be extracted and reused from particular models built from those generic constructs

return to handout slide sequence

20:00 21 - ISO/DIS 19439 & Recursion

- two examples of recursion with 19439
- top an operational enterprise A uses the artifacts of its domain to create a new enterprise B,
 - e. g., business A builds factory B
- note
 - domain containment relationship
 - A contributes to B only through the Implementation phase
 - B can create another enterprise model instance from its operational phase
- might also be the case
 - B enterprise uses the A domain and
 - adds functionality
 - to enable a different operational phase
- bottom domain of A is augmented
 - by reference catalog artifacts
 - to achieve new enterprise C functionality or capability

22:00 22 - ISO/DIS 19439 Life History

cover bottom of slide

- life history
 - GERAM concept carried into 15704
 - thus relevant to 19439
- consider the time ordered creation of artifacts through the lifecycle
- note
 - some phase overlap is expected
 - trend is down and to the right with time
 - operational phase is of arbitrary duration
 - decommission is included for completeness
 - use a vertical bar to represent the entire lifecycle
 - stacking the artifacts
 - rather than spreading them in time

uncover bottom of slide

- using singular lifecycle representations
 - depict a life history as linked lifecycles
 - each bar being a point-in-time solution relative to the others
 - remember only operation phase links forward to new enterprise lifecycles

23:30 23 – Life history example

- example from the Globemen project
 - 3 enterprises are shown
 - network collection of international companies
 - virtual enterprise means to pool capabilities
 - products the resulting goods and services
 - time scale goes from left to right
 - lifecycle phases are taken from GERA
- points 1 through 3a concern
 - network management and control setup
- 4 relates to several projects
 - prepare reference models and tools
 - for virtual enterprise use
 - small triangles represent those artifacts
- at 5 network begins operation
- 6 a customer identifies product need
 - initiates the virtual enterprise projects of 7 and 8
 - one of which produces a new model or tool artifact
- operational virtual enterprise
 - creates a new quotation, 9 thru 10, and
 - then shuts down at 11
- accepted quotation starts up virtual enterprise at 12
 - setup the new product at 14 based upon quotation
 - shuts down at 15
- the network does not last forever and terminates at 16
- pay particular attention to
 - small triangle artifacts and

- point-in-time delineation

26:00 24 – C4ISR History

- moving to C4I SR
- efforts by US Dept. of Defense
 - to enhance integration and interoperability
 - throughout world wide defense operations
- present the 1998 version
 - ongoing effort with new versions in draft
 - growing number of practitioners
- presentation is different
 - less concern for content
 - more concern for structural formalization

27:00 **25a – C4ISR Architecture View graphic**

25 – C4ISR View dimension

- architectural views
 - principle organizational dimension of C4ISR
 - although not purposive
- Operational elements consist of
 - functionality and information flows necessary to prepare for and engage an adversary
 - tasks, activities, mission scope, doctrine
 - like other views
 - this is high-level vantage point
 - resolution limited to preliminary design detail
- System elements consist of
 - resources and capability required to support preparatory activities and engagement
 - System view links
 - physical resources to operational requirements
 - use technical specifications
 - highly dependent upon available technology
 - more detail than related operational elements
- Technical view consists of rules for
 - arrangement, interaction, and interdependence of
 - system components
 - presented as profiles of
 - standards, conventions, rules and criteria
 - govern
 - services, interfaces, and relationships for

- o particular systems
- o relate to particular operations

30:00 **26a – C4ISR Guidance graphic**

26 – C4ISR Guidance dimension

- articulates process for building C4ISR artifacts
- given the ordinate coordinates distinct labels
 - to make the dimension more obvious and
 - convenient to discuss
- C4I SR is devoted to the creation of suitable artifacts
 - directive regarding the construction is purposive
- familiar steps,
 - like ISO/DIS 19439
 - conclusion does not result in an operational state
 - result enables
 - further analysis and
 - decision-making
 - corresponding to specific architectural focus
- critical aspects of creating C4I SR artifact products
 - determining scope for the level of detail and
 - characterizing its extent are
- design in the C4I SR context
 - primarily a selection activity
 - among the established product proto-types
 - using available reference resources
- expected to validate products prior to deployment
 - simulations and
 - trial runs

32:00 **27a – C4ISR Integration graphic**

27 – C4ISR Integration dimension

- complex dimension
 - organization's interactive perspectives are unique
 - conflict resolution among architectures must occur without an assured common purpose for particular representations
 - captures the C4I SR purpose
 - integration across organizational structures
 - sustain global warfighter operations & support
- similar C4I SR products enhance integration
- recognizable hierarchical ordering
 - defense structure
 - geographic dispersion
 - embedded decomposition in organization echelon coordinates

33:30 **28a – C4ISR Universal Reference graphic**

- 28 C4ISR Building Block dimension
- most of C4ISR document devoted to elements of unordered dimension
- one coordinate holds Universal Reference Resources
 - partitioned across the views
 - support product generation (as shown here)
 - some applicable to all views
 - others focused on particular views
- architecture expressed in form of models, i.e. products
 - essential products
 - used for high-level comparisons and
 - budget decisions
 - required to articulate a view
 - supporting products
 - specific intentions or characterizations,
 - included as needed
- additional products not previously defined in C4I SR
 - as needed to complete an architectural articulation
- important aspect of products
 - interrelationship between the product elements
 - provides means for accountability

35:30 29 – C4ISR & Recursion

- depicted here is a Universal Reference Resource providing content for three levels of force integration to produce an integrated descriptive architecture
- at each level the framework mechanism is present
- integration is enhanced by utilizing the common framework products and guidance

37:00 30 - Archetype summary

- 3 archetypes now described
- 9 dimensions describing enterprise artifact arrangement

Zachman

- purposive ordered ordinate role with coordinates of context, owner, designed, builder, out-ofcontext
- unordered ordinate interrogative with coordinates of what, how, where, who, when, why

• ISO/DIS 19439

- purposive ordered ordinate model with coordinates of domain, concepts, requirements, design, implementation, operation, decommission
- unordered ordinate view with coordinates of function, information, resource, organization
- ordered ordinate genericity with coordinates of generic, partial, particular

• C4ISR

- unordered ordinate view with coordinates of operational, system, technical
- purposive ordered ordinate guidance with coordinates of focus, scope, characterize, determine, build, use
- purposive ordered ordinate integration with coordinates of multi-multi, multi-single, singlemulti, single-single

- unordered ordinate building block with coordinates of Universal Reference Resource, essential, supporting, additional
- note dimensions of C4I SR are not as crisp as those of Zachman and ISO/DIS 19439

38:00 31 - Proto-type models

- various model descriptions from Zachman
 - interrogative
 - cell
 - another dimension emerges
 - corresponds to similar dimension in others
- each archetypes has two levels of proto-type models
- toward general end of the model scope scale
 - Zachman interrogative models
 - ISO/DIS 19439 constructs
 - C4I SR Universal Reference Resources
 - most general models are
 - differing complexity and
 - conceptual origin
- center of scope scale
 - Zachman cell models
 - ISO/DIS 19439 partial models
 - C4ISR product models
 - more similar than their generalized counterparts
 - in some cases have the same labels attached
 - because of similarity, at this coordinate observers attempt to map one framework's content to that of another

39:30 32 – Formal properties

- evaluate w.r.t. 4 aspects of formal meta meta model
 - structure
 - observe Zachman is closed under recursive decomposition/composition
 - composing Zachman models yield another Zachman model
 - yields a high evaluation
 - closure greatly simplifies formal treatment
 - recursion for ISO/DIS 19439 is not closed
 - operations on frames do not necessarily yield frames
 - because of way operations are expressed
 - C4I SR has no explicit recursive structure
 - recursion evident in integration dimension
 - connections
 - supported by elaboration along purposive dimensions for each archetype
 - elevated C4I SR because
 - explicit effort to identify connections between products at the structural level
 - constraints
 - none address constraints as a structural aspect
 - each recognizes importance of expressiveness within models to achieve consistency and completeness

 much effort remains to adequately express constraints within a framework

- views
 - ISO/DIS 19439 and C4ISR offer
 - fixed views of the enterprise
 - allude to mechanisms for other views
 - fixed views may not actually support "need to know" capability
 - Zachman's interrogatives are minimalist views
 - lack mechanisms for projecting views
 - need more utility to support user artifacts

42:00 33 – Detail elaboration

- where's the book John?
- ISO/DIS 19439
 - companion standard identified as 19440
 - describes set of constructs from which the partial and particular models of 19439 are to be built
 - should go for initial DIS ballot in early 2003
 - also, the EU has funded a Universal Enterprise
 Modeling Language project
 - focused on the standardization of a new language for building enterprise models
 - began in early 2002 with targets for 2004
 - ongoing efforts to identify and catalog partial models from industrial operations
 - expectation models will become enactable and serve to operate the enterprise
- C4I SR standard detail
 - in products and
 - supporting Universal Reference Resources
 - problem has been the proliferation of such detail
 - made integration more difficult
 - C4I SR objective is to standardize the production of model detail and interaction
 - level of detail is limited
 - preliminary design necessary to support further analysis

43:30 34 – Purposive dimension

- recall slide about continuants and occurrents
 - apply distinction to purposive dimension
- Zachman role dimension is continuant
 - ordering is based upon an idealized dependency
 - rather than sequence terminating at a point-in-time
 - always wholly present
 - has all of its parts
 - explicit
 - implicit
 - changes in time as enterprise evolves
 - characteristics make such a highly suitable for
 - scenario analysis
 - since expression is complete
 - but perhaps not consistent
- by contrast, ISO/DIS 19439 model phase is occurrent
 - life cycle begins
 - accumulates different parts
 - operates in time with those parts
 - terminates
 - realizes operations of the enterprise
 - to change operation
 - begin a new life cycle
 - re-use as many parts as possible
- C4I SR has two purposive dimensions
 - occurrent guidance dimension
 - build operational, system, and technical models

- continuant Integration dimension related to
 - global deployment and
 - support
- one consequence of multi-purpose framework is eventual conflict in use as the now elusive integration becomes more dominate in application
- an entity, like a framework meta-model, can not be both continuant and occurrent
- at this point-in-time the building of product artifacts to C4I SR specifications is the purpose for its use
- as purpose shifts to integration dimension, either
 - occurrent dimension and related aspects will
 - loose utility or
 - will be distinguished as a separate entity –
 we suspect the latter

45:00 34a – Different life history

cover bottom of slide

- recall lifecycle of ISO/DIS 19439 framework
 - artifacts create an operational solution
 - until decommission
 - a single vertical line for each such occurrence
 - looks sort of like a silo!

uncover bottom of slide

- now visualize a Zachman Framework in time as artifacts are created
 - some might argue that we've just superimposed many occurrent framework instances and in some sense that is indeed the case
 - but more going on than just that overlay and intertwining of artifact sequences
 - new artifacts are added without regard to "phase" ordering as the enterprise evolves
 - the input context becomes richer and the output context becomes denser
 - notice to the right that a frequency distribution of artifacts reveals the pyramid we saw early on
- if ISO/DIS 19439 phase artifacts yield a lifecycle, then Zachman role artifacts yield a never-ending saga

47:00 35 - Taking a snapshot

- now examine possible interaction between frameworks
- on left Z is a Zachman Framework
 - nested frames depicted
 - use meta-meta model concepts
- on right are 2 I SO/DIS 19439 frameworks
- the function T takes continuant frames of Z into phases (and views) of the occurrent framework P
 - no fixed correspondence between the ordering on the role of Z and the phase of P
 - <Z, R2, I1> and <Z, R1, I2> both go to <P1, R>
 - for example
 - designers requirement for active monitoring of stock feed rate results in monitoring capability requirement
 - equity interest in minimal product cost yields a minimum staffing requirement
 - also <Z, R1, I 2> goes to <P1, R> while <Z, R2, I 2> goes to its predecessor <P1, C>
 - input context of Z, I CZ, contains the domain of both P1 and P2 in this example
 - note equivalence relation when Z has all of that excruciating detail available

50:00 36 – And now the other way

- define a function T-1 in the other direction
 - artifacts created during the model phases of ISO-DIS 19439
 - inserted into a Zachman Framework
 - function may modify the order of placement after the lifecycle phase dependency is stripped
 - expect ordering is maintained most of the time
 - dependency imposed by lifecycle sequence is similar to dependency imposed by roles
 - simply because roles are positively correlated to lifecycle phases
 - but correlation is not causation
 - note context containment of domain as before
 - however, in this case, equivalence is not possible
 since Z is much more elaborate than either P1 or P2
 - union of all T-1 for Z
 - may recreate the structure
 - may not recreate all of connections and constraints

52:00 37 – More about T and T-1

cover bottom of slide

- T and T-1 are not simply a function and its inverse
- T imposes partial temporal ordering on components of Z placed into P
 - at least adds the phase coordinate
 - may compose models into view elements
- but going from P to Z involves
 - more than simply removing phase coordinate label
 - when [P1] or [P2] are not primitive models,
 dependency relationships must be examined
 - to select an appropriate role coordinate
 - to select an appropriate interrogative, complex view must be
 - partitioned or
 - decomposed

uncover bottom of slide

- a constraint we impose on T taking Z to P is
 - any equivalence among the components of Z must also exist among the same components of P
 - this is a weak constraint since equivalent components are uncommon

- it does address an issue regarding the extent of a component that is transformed
 - since an continuant frame is only whole, its extent must go along as well
 - sub-structure issue offers many opportunities for formalization efforts

54:00 38 – C4ISR as composite

- already alluded to the correspondence between
 - ISO/DIS 19439 Model phase dimension and
 - the C4I SR Guidance dimension
 - addition of an explicit decommission phase would probably benefit us all
- Dr. Katie Sowell with MITRE has examined the correspondence between C4ISR and Zachman as well as other frameworks
 - examination focused on artifact contents
 - not focused on properties of frameworks
 - look at a portion of her work and then discuss framework property correspondence

55:00 38a – Zachman/C4ISR mapping

- recall that this is a T-1 example
 - first notice critical C4I SR products do not correspond to entire Zachman Framework
 - most notably motivating why is missing
 - this observation is consistent with our containment expectation
 - second statement about C4ISR Technical View and "rules not explicit in Zachman" indicates difficulty of mapping complex models into simple models
 - rules abound throughout a Zachman Framework
 - are very explicit in the why column
 - but then C4I SR does not address "why"
 - again pointing to the problem of decomposing complex models into simple model representations
 - 19 C4I SR product bubbles actually represent only 13 products with 1 bubble of multiple products
 - C4I SR products often are depicted as overlapping two or more Zachman cells
 - note that the C4I SR views are distributed across interrogatives – except why of course
- in all not a very satisfying correspondence is shown

56:00 38b – Other C4ISR mapping

- top is C4I SR mapped to the Treasury Enterprise Architecture Framework
 - better fit because
 - TEAF views are same as ISO/DIS 19439 views
 - complex like C4I SR views
 - note C4I SR products more spread across row roles
 - similar to Zachman roles
 - e.g., "node connectivity" has three partitions
 - conceptual, logical, physical
 - corresponding to owner, designed, builder
- bottom has
 - Zachman role rows
 - Federal Enterprise Architecture Framework views
 - allusion to Zachman interrogatives
 - actually complex views
 - results in better fit as above
 - shows some pilot model intersections
- all three examples struggle to map artifacts of
 - occurrent framework dimension, namely C4I SR Guidance, into
 - continuant framework dimension the Zachman role
- exorcism of temporal dependency and explication of composable primitive models is a very difficult functional transformation rather than a straightforward mapping

• will not be done on a broad scale

57:00 39 – A final observation

- two approaches to managing change
- first
 - use the Zachman Framework to document P for customer C's widget W
 - verify that P actually is producing W for C just to make sure Z is current
 - modify Z for the new process M maps Z to Z'
 - create the new occurrent framework P' for the new operations to build W for C
- second,
 - take the verified framework P
 - change it to realize new P' operations for making the widgets W for C
 - then document the new P in Z to get Z'
- of course another approach is to
 - just start on P' from scratch you know
 - identify the domain
 - define appropriate concepts
 - establish requirements
 - specify the design
 - describe the implementation
 - operate the domain
 - and eventually decommission
 - I have not shown that approach since it is so familiar to all of us

- as a exercise for you to ponder: give two reasons for the 2nd approach resulting in failure
- in summary: to manage change, begin with a Zachman Framework in excruciating detail
- with those words of wisdom, I expect it is time to eat!